数学代写|数学建模代写Mathematical Modeling代考|TMA4195 Modelling Analysis

如果你也在 怎样代写数学建模Mathematical Modeling TMA4195这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。数学建模Mathematical Modeling是使用数学概念和语言对一个具体系统的抽象描述。建立数学模型的过程被称为数学建模。数学模型被用于自然科学(如物理学、生物学、地球科学、化学)和工程学科(如计算机科学、电气工程),以及非物理系统,如社会科学(如经济学、心理学、社会学、政治学)。使用数学模型来解决商业或军事行动中的问题是运筹学领域的一个重要部分。数学模型也被用于音乐、语言学、和哲学(例如,集中用于分析哲学)。

数学建模Mathematical Modeling可以有很多形式,包括动态系统、统计模型、微分方程或博弈论模型。这些和其他类型的模型可以重叠,一个特定的模型涉及各种抽象结构。一般来说,数学模型可能包括逻辑模型。在许多情况下,一个科学领域的质量取决于在理论方面开发的数学模型与可重复的实验结果的吻合程度。理论上的数学模型和实验测量结果之间缺乏一致性,往往导致更好的理论被开发出来,从而取得重要进展。

数学建模Mathematical Modeling代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的数学建模Mathematical Modeling作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此数学建模Mathematical Modeling作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

海外留学生论文代写;英美Essay代写佼佼者!

EssayTA有超过2000+名英美本地论文代写导师, 覆盖所有的专业和学科, 每位论文代写导师超过10,000小时的学术Essay代写经验, 并具有Master或PhD以上学位.

EssayTA™在线essay代写、散文、论文代写,3分钟下单,匹配您专业相关写作导师,为您的留学生涯助力!

我们拥有来自全球顶级写手的帮助,我们秉承:责任、能力、时间,为每个留学生提供优质代写服务

论文代写只需三步, 随时查看和管理您的论文进度, 在线与导师直接沟通论文细节, 在线提出修改要求. EssayTA™支持Paypal, Visa Card, Master Card, 虚拟币USDT, 信用卡, 支付宝, 微信支付等所有付款方式.

数学代写|数学建模代写Mathematical Modeling代考|TMA4195 Modelling Analysis

数学代写|数学建模代写Mathematical Modeling代考|Modelling Analysis

Amy and Angela’s modelling behavior can be charted through Borromeo Ferri’s (2006) modelling cycle (see Fig. 16). This begins when they identified the parking lot as something ambiguous, as no information was provided other than that it needs to fit 30 vehicles (real situation $\left(\mathrm{RS}^3\right.$ ). Drawing from her EMK, Amy identified the length and width of vehicles as important factors in the designs (MRS2) but were not certain what to make of these measurements within their design. These actions helped reduce some ambiguity, but were not sufficient to help them move forward.

Instead of spending more time on the parking lot, Amy and Angela put it on hold and worked on other aspects of the problem.

As the girls re-read the instructions they focused on the distance between the buildings and the property lines (RS3). They interpreted this as a restriction to the “usable space” on the grid (MRS4), made plans to create an outline on the grid (RM5), drew from the instructions the information they needed, and applied their mathematical skills to convert the distance away from the property line into number of squares on the grid (MM6, MS7). They interpreted their solution as an outline on the grid and used it to represent the space they could use (RSoln8). This is Amy and Angela’s first complete modelling cycle (MC1, steps 3-8).

After the outline, the girls moved on to the soccer field (MC2, steps 9-14) and the two tennis courts (MC3, steps 15-20). They took a similar approach to the usable space and outlined these structures on the grid. One thing that is worth mentioning here is Amy and Angela’s rotation of the soccer field after they generated a real solution for the tennis courts, as they recognized the overall relationships between the locations and placements of the buildings, and that the rotation allows them to have a better use of space.

Moving on to the parking lot (MC4, steps 21-26), the girls re-read the instructions (RS 21), and focused on creating a 30 car parking lot (MRS22). They drew some sketches of parking spaces based on the measurements they took, but experienced difficulties in visualizing the relationship between the vehicles and the parking spaces and the relationship between the parking spaces and the parking lot (RM23). Although they have both visited various parking lots as passengers, neither had reached the legal driving age at the time of the study, and had never experienced parking lots from a driver’s perspective. Their lack of EMK became a hindrance to their modelling process. A discussion with the teacher led them to deepen their understanding of parking lots, to update their real model, and eventually to generate their mathematical model (MM24), mathematical solution (MS25), and real solution (RSoln26). Unfortunately, despite all their hard work, the students failed to create a reasonable parking lot design: there was no indication of an entrance or an exit to the parking lot in this design; they did not include any driveways that connect the edge of the school property line with the parking lot; and their driveway inside the parking lot is too narrow for most if not all vehicles. It seems that their discussion with the teacher and with each other was not sufficient to expand their EMK for the purpose to generate a reasonable parking lot design.

Finally, the girls proceeded to work on the school building (MC5, steps 27-32). They re-read the instructions (RS27) and aimed to determine the amount of floor space the school building needed on the grid (MRS28). They proceeded to make decisions about the shape of the school building (RM29), built a mathematical model by looking for the factors of 11,000 , converted these into number of squares (MM30, MS31), and interpreted 11 and 10 as the length and width of the school in terms of squares (RSoln32). This is when they got stuck, as they could not find the space they needed on the grid.

数学代写|数学建模代写Mathematical Modeling代考|Flow Analysis

Amy and Angela’s progress through the Design the New School task can also be analyzed through the lens of flow. More specifically, their progress on the task can be charted on Liljedahl’s (2018) modified flow diagram (see Fig. 17).

Amy and Angela began the task as presented in Fig. 9 (1). Their first choice was to work on designing the parking lot (2). Although this proved to be too challenging for them at the time they did make some immediate progress around how big a single car could be (3). From here they decided to shift to what they thought was the easiest of the aspects to work on – determining the usable space around the perimeter of the lot (4). This was easily achieved so they used the same strategy to determine the size and placement of the soccer field (5). This shift from the boundary to the soccer field did not represent an increase in challenge, but allowed for the sequential development of the skill of scaling dimensions in the problem into the diagram (6).

Amy and Angela then moved onto trying to figure out how to place the tennis courts (7). This proved to be a little bit more challenging as they needed to reposition the soccer field and scale and place the tennis courts (8). After this they shifted back to figuring out the needed dimensions and placement of the parking lot (9). As before, this was a significant increase in challenge for the two girls requiring them to, for the first time in the task, make estimates based on Amy’s earlier measurements (10).

The only aspect left for them to consider was the dimensions and placement of the actual school building. At first, this seemed like it was going to only be a matter of doing some scaling (11), but it actually turned out to be much more challenging (12) and was not resolved until they realized that they could make a two story structure (13). At this point they needed only to figure out how to divide up the area of the two floors (14).

Once they had satisfied all of the requirements of the task they then challenged themselves to make it more aesthetically pleasing (15) which resulted in the recalculation of the area of the two floors of the school and adding some realistic elements (16).

The overall time that Amy and Angela spent on the task was $75 \mathrm{~min}$, during which they were highly engaged the whole time. When looking at the flow analysis of their activity it is easy to see why. Although they got off to a rough start by deciding to first solve the parking lot issue, their perseverance provided a buffer until they autonomously opted for something more manageable. From there, they progressed in a staircase fashion wisely selecting, in turn, progressively more challenging aspects of the task to work on as their abilities increased (4-12). At that point, they got stuck. But, again, their perseverance kept them working until they had their break through. From there it was routine work until they placed the school (12-14). At that they again exercised their autonomy and chose to increase the challenge by improving the aesthetics of their solution.

数学代写|数学建模代写Mathematical Modeling代考|TMA4195 Modelling Analysis

数学建模代写

数学代写|数学建模代写Mathematical Modeling代考|Modelling Analysis

Amy 和 Angela 的建模行为可以通过 Borromeo Ferri (2006) 的建模周期绘制出来(见图 16)。这开始于他们将停车场确定为模棱两可的东西,因为除了需要容纳 30 辆车(真实情况)外,没有提供任何信息(R小号3). 根据她的 EMK,Amy 将车辆的长度和宽度确定为设计中的重要因素 (MRS2),但不确定在他们的设计中如何使用这些测量值。这些行动有助于减少一些歧义,但不足以帮助他们向前迈进。

艾米和安吉拉没有在停车场上花费更多时间,而是将其搁置并着手解决问题的其他方面。

当女孩们重新阅读说明时,她们将注意力集中在建筑物和财产界线 (RS3) 之间的距离上。他们将此解释为对网格(MRS4)上“可用空间”的限制,计划在网格上创建轮廓(RM5),从说明中提取他们需要的信息,并运用他们的数学技能来转换距离远离属性线进入网格上的多个正方形(MM6,MS7)。他们将他们的解决方案解释为网格上的轮廓,并用它来表示他们可以使用的空间 (RSoln8)。这是 Amy 和 Angela 的第一个完整建模周期(MC1,步骤 3-8)。

大纲之后,女孩们继续前往足球场(MC2,第 9-14 步)和两个网球场(MC3,第 15-20 步)。他们对可用空间采取了类似的方法,并在网格上勾勒出这些结构。这里值得一提的是艾米和安吉拉在为网球场制定了一个真正的解决方案后对足球场的轮换,因为他们认识到建筑物的位置和布局之间的整体关系,并且这种轮换使他们能够拥有更好地利用空间。

继续前往停车场(MC4,步骤 21-26),女孩们重新阅读说明(RS 21),并专注于创建一个 30 个车位的停车场(MRS22)。他们根据所测量的数据绘制了一些停车位草图,但在可视化车辆与停车位之间的关系以及停车位与停车场之间的关系时遇到了困难(RM23)。虽然他们都以乘客的身份参观过各种停车场,但在研究时都没有达到法定驾驶年龄,也从未从司机的角度体验过停车场。他们缺乏 EMK 成为他们建模过程的障碍。与老师的讨论使他们加深了对停车场的理解,更新了他们的真实模型,并最终生成了他们的数学模型(MM24),数学解 (MS25) 和实解 (RSoln26)。不幸的是,尽管付出了所有的努力,学生们还是未能做出合理的停车场设计:这个设计中没有指示停车场的入口或出口;他们不包括任何连接学校财产线边缘和停车场的车道;他们在停车场内的车道对于大多数(如果不是全部)车辆来说太窄了。似乎他们与老师和彼此之间的讨论不足以扩展他们的 EMK 以生成合理的停车场设计。他们不包括任何连接学校财产线边缘和停车场的车道;他们在停车场内的车道对于大多数(如果不是全部)车辆来说太窄了。似乎他们与老师和彼此之间的讨论不足以扩展他们的 EMK 以生成合理的停车场设计。他们不包括任何连接学校财产线边缘和停车场的车道;他们在停车场内的车道对于大多数(如果不是全部)车辆来说太窄了。似乎他们与老师和彼此之间的讨论不足以扩展他们的 EMK 以生成合理的停车场设计。

最后,女孩们继续在学校建筑上工作(MC5,步骤 27-32)。他们重新阅读说明 (RS27) 并旨在确定学校建筑在网格上所需的建筑面积 (MRS28)。他们着手决定校舍的形状(RM29),通过寻找 11,000 的因数建立数学模型,将其转换为正方形的数量(MM30、MS31),并将 11 和 10 解释为长度和宽度学校的正方形 (RSoln32)。这是他们陷入困境的时候,因为他们无法在网格上找到所需的空间。

数学代写|数学建模代写Mathematical Modeling代考|Flow Analysis

艾米和安吉拉在设计新学校任务中​​的进展也可以通过流动的镜头进行分析。更具体地说,他们在任务上的进展可以绘制在 Liljedahl (2018) 修改后的流程图上(见图 17)。

艾米和安吉拉开始了如图 9 (1) 所示的任务。他们的第一选择是设计停车场 (2)。尽管这在当时被证明对他们来说太具有挑战性,但他们确实在一辆汽车的尺寸方面取得了一些直接进展 (3)。从这里开始,他们决定转向他们认为最容易处理的方面——确定地块周边的可用空间 (4)。这很容易实现,因此他们使用相同的策略来确定足球场 (5) 的大小和位置。这种从边界到足球场的转变并不代表挑战的增加,但允许将问题中的缩放维度的技能顺序发展到图表 (6) 中。

然后艾米和安吉拉开始尝试弄清楚如何放置网球场 (7)。事实证明这更具挑战性,因为他们需要重新定位足球场并缩放和放置网球场 (8)。在此之后,他们转回确定停车场 (9) 所需的尺寸和位置。和以前一样,这对两个女孩来说是一个显着增加的挑战,要求她们在任务中第一次根据艾米的早期测量结果进行估计 (10)。

留给他们考虑的唯一方面是实际校舍的尺寸和位置。起初,这似乎只是做一些缩放的问题 (11),但事实证明它更具挑战性 (12),直到他们意识到可以制作两层结构时才解决(13). 此时他们只需要弄清楚如何划分两层楼的面积(14)。

一旦他们满足了任务的所有要求,他们就会挑战自己,使其更美观 (15),这导致重新计算学校两层楼的面积并添加一些现实元素 (16)。

Amy 和 Angela 在任务上花费的总时间是75 米我n,在此期间,他们一直高度投入。当查看他们活动的流量分析时,很容易看出原因。尽管他们决定首先解决停车场问题,但一开始并不顺利,但他们的毅力为他们提供了缓冲,直到他们自主选择了更易于管理的事情。从那里开始,他们以阶梯式的方式明智地选择,随着他们能力的提高,他们逐渐选择任务中更具挑战性的方面来处理 (4-12)。就在那时,他们陷入了困境。但是,他们的毅力再次让他们努力工作,直到他们取得突破。从那里开始,这是例行工作,直到他们安置学校 (12-14)。那时他们再次行使自主权,并选择通过改进解决方案的美学来增加挑战。

数学代写|数学建模代写Mathematical Modeling代考

数学代写|数学建模代写Mathematical Modeling代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。



博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。



微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。



计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。



MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注