数学代写|抽象代数作业代写Abstract Algebra代考|MATH4200 Classification of Finite Plane Symmetry Groups

如果你也在 怎样代写抽象代数abstract algebra MATH4200这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。抽象代数abstract algebra是数学的一个分支,处理符号和操作这些符号的规则。在初级代数中,这些符号(今天写成拉丁字母和希腊字母)代表没有固定数值的量,称为变量。

抽象代数abstract algebra代数这个词不仅用于命名数学的一个领域和一些子领域,它还用于命名一些种类的代数结构,如一个场上的代数,通常称为代数。有时,同一短语也用于一个子领域及其主要代数结构;例如,布尔代数和布尔代数。一个专门研究代数的数学家被称为代数学家。

essayta.™抽象代数abstract algebra代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。essayta.™, 最高质量的抽象代数abstract algebra作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此抽象代数abstract algebra作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

essayta.™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在抽象代数abstract algebra代写方面经验极为丰富,各种抽象代数abstract algebra相关的作业也就用不着 说。

我们提供的抽象代数abstract algebra MATH763及其相关学科的代写,服务范围广, 其中包括但不限于:

数学代写|抽象代数作业代写Abstract Algebra代考|MATH4200 Classification of Finite Plane Symmetry Groups

数学代写|抽象代数作业代写Abstract Algebra代考|Classification of Finite Plane Symmetry Groups

Our first goal in this chapter is to classify all finite plane symmetry groups. As we have seen in earlier chapters, the dihedral group $D_n$ is the plane symmetry group of a regular $n$-gon. (For convenience, call $D_2$ the plane symmetry group of a nonsquare rectangle and $D_1$ the plane symmetry group of the letter “V.” In particular, $D_2 \approx Z_2 \oplus Z_2$ and $D_1 \approx Z_2$.) The cyclic groups $Z_n$ are easily seen to be plane symmetry groups also. Figure 26.3 is an illustration of an organism whose plane symmetry group consists of four rotations and is isomorphic to $Z_4$. The surprising fact is that the cyclic groups and dihedral groups are the only finite plane symmetry groups. The famous mathematician Hermann Weylbio]Weyl, Hermann attributes the following theorem to Leonardo da Vinci, (1452-1519).

The only finite plane symmetry groups are $Z_n$ and $D_n$
PROOF Let $G$ be a finite plane symmetry group of some figure. We first observe that $G$ cannot contain a translation or a glide-reflection, because in either case $G$ would be infinite. Now observing that the composition of two reflections preserves orientation, we know that such a composition is a translation or rotation. When the two reflections have parallel axes of reflection, there is no fixed point so the composition is a translation. Thus, every two reflections in $G$ have reflection axes that intersect in some point. We claim that all reflections intersect in the same point. Suppose that $f$ and $f$ are two distinct reflections in $G$. Then because ff preserves orientation, we know that $f f$ is a rotation. We use the fact from geometry that a finite group of rotations must have a common center, say $P$. This means that any two reflections must intersect at point $P$. So, we have shown that all the elements of $G$ have the common fixed point $P$.

数学代写|抽象代数作业代写ALGEBRA代考|Classification of Finite Groups of Rotations in $\mathrm{R}^3$

One might think that the set of all possible finite symmetry groups in three dimensions would be much more diverse than is the case for two dimensions. Surprisingly, this is not the case. For example, moving to three dimensions introduces only three new groups of rotations. This observation was first made by the physicist and mineralogist Auguste Bravais in 1849, in his study of possible structures of crystals.
Theorem 26.2. Finite Groups of Rotations in $R^3$
Up to isomorphism, the finite groups of rotations in $R^3$ are $Z_n, D_n, A_4, S_4$, and $A_5$

Theorem 26.2, together with the Orbit-Stabilizer Theorem (Theorem 7.4), makes easy work of determining the group of rotations of an object in $\boldsymbol{R}^3$

I EXAMPLE 8 We determine the group $G$ of rotations of the cuboctahedron in Figure 26.4, which is composed of six congruent squares and eight congruent equilateral triangles. We begin by singling out any one of the squares. Obviously, there are four rotations that map this square to itself, and the designated square can be rotated to the location of any of the other five. So, by the OrbitStabilizer Theorem (Theorem 7.4), the rotation group has order $4 \cdot 6=24$. By Theorem 26.2, $G$ is one of $Z_{24}, D_{12}$, and $S_4$. But each of the first two groups has exactly two elements of order 4 , whereas $G$ has more than two. So, $G$ is isomorphic to $S_4$

数学代写|抽象代数作业代写Abstract Algebra代考|MATH4200 Classification of Finite Plane Symmetry Groups

抽象代数代写

数学代㝍抽象代数作业代㝍Abstract Algebra代考|Classification of Finite Plane Symmetry Groups

本章的第一个目标是对所有有限平面对称群进行分类。正如我们在前面的章节中看到 的, 二面角群 $D_n$ 是正则的平面对称群 $n$-坤。 (为方便起见, 请致电 $D_2$ 非正方形矩形的 平面对称群和 $D_1$ 字母“V”的平面对称群。尤其, $D_2 \approx Z_2 \oplus Z_2$ 和 $D_1 \approx Z_2$.) 循环群 $Z_n$ 也很容易看出是平面对称群。图 26.3 是一个有机体的图示, 其平面对称群由四个旋 转组成并且同构于 $Z_4$. 令人惊讶的事实是循环群和二面角群是仅有的有限平面对称群。 著名数学家 Hermann Weylbio]Weyl, Hermann 将以下定理归功于达芬奇 (Leonardo da Vinci, 1452-1519)。
仅有的有限平面对称群是 $Z_n$ 和 $D_n$
证明让 $G$ 是某个图形的有限平面对称群。我们首先观察到 $G$ 不能包含翻译或滑行反射, 因为在任何一种情况下 $G$ 将是无限的。现在观察两个反射的组合保持方向, 我们知道这 样的组合是平移或旋转。当两个反射具有平行的反射轴时, 没有固定点, 因此构图是平 移。因此, 每两次反射 $G$ 具有在某些点相交的反射轴。我们声称所有反射相交于同一 点。假设 $f$ 和 $f$ 是两个不同的反射 $G$. 然后因为 $\mathrm{ff}$ 保留方向, 我们知道 $f f$ 是一个旋转。我 们使用几何学中的事实, 即有限的旋转群必须有一个共同的中心, 比如说 $P$. 这意味着任 何两个反射必须相交于一点 $P$. 所以, 我们已经证明了所有的元素 $G$ 有共同不动点 $P$.

数学代写|抽象代数作业代写ALGEBRA代考|Classification of Finite Groups of Rotations in $\mathrm{R}^3$


人们可能会认为, 三维空间中所有可能的有限对称群的集合会比二维空间中的集合更加 多样化。令人惊讶的是, 事实并非如此。例如, 移动到三维只引入了三组新的旋转。物 理学家和矿物学家奥古斯特布拉维 (Auguste Bravais) 于 1849 年在研究晶体的可能结 构时首次做出了这一观察。
定理 26.2。中的有限旋转群 $R^3$
直到同构, 旋转的有限群 $R^3$ 是 $Z_n, D_n, A_4, S_4$, 和 $A_5$
定理 26.2 与轨道稳定器定理 (定理 7.4) 一起, 可以很容易地确定一个物体的旋转群 $\boldsymbol{R}^3$

I 示例 8 我们确定组 $G$ 图 26.4 中立方体的旋转, 它由六个全等正方形和八个全等等边三 角形组成。我们首先挑出任何一个方块。显然, 有四个旋转将这个方块映射到自身, 指 定的方块可以旋转到其他五个中任意一个的位置。所以, 根据 OrbitStabilizer 定理 (定理 7.4), 旋转群有阶 $4 \cdot 6=24$. 根据定理 26.2, $G$ 是其中之 $Z_{24}, D_{12}$, 和 $S_4$. 但是前两个组中的每一个都恰好有两个 4 阶元素, 而 $G$ 有两个以上。所以, $G$ 同构于 $S_4$

数学代写|抽象代数作业代写Algebra代考

数学代写|抽象代数作业代写Algebra代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在微观经济学代写Graph Theory代写方面经验极为丰富,各种微观经济学代写Microeconomics相关的作业也就用不着 说。

机器学习代写

机器学习(ML)是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用中,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。机器学习与统计学密切相关,统计学专注于使用计算机进行预测,但并非所有的机器学习都是统计学习。数学优化的研究为机器学习领域提供了方法、理论和应用领域。



统计推断代写

统计推断是指从数据中得出关于种群或科学真理的结论的过程。进行推断的模式有很多,包括统计建模、面向数据的策略以及在分析中明确使用设计和随机化。



微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。



计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。



MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注