金融代写|随机控制理论代写STOCHASTIC CONTROL代考|ECE684 N-cube implementation

如果你也在 怎样代写随机控制理论Stochastic Control MA547这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。随机控制理论Stochastic Control或随机最优控制是控制理论的一个子领域,它处理观察中或驱动系统进化的噪声中存在的不确定性。系统设计者以贝叶斯概率驱动的方式假设,具有已知概率分布的随机噪声会影响状态变量的演化和观测。随机控制的目的是设计受控变量的时间路径,以最小的成本执行所需的控制任务,尽管存在这种噪声,但以某种方式定义。

随机控制理论Stochastic Control在随机控制中,一个研究得极为透彻的表述是线性二次高斯控制。这里的模型是线性的,目标函数是二次形式的期望值,而干扰是纯加性的。对于只有加性不确定性的离散时间集中系统的一个基本结果是确定性等价特性:即这种情况下的最优控制方案与没有加性干扰时得到的方案相同。这一特性适用于所有具有线性演化方程、二次成本函数和仅以加法方式进入模型的噪声的集中式系统;二次假设允许遵循确定性等价特性的最优控制律是控制器观测值的线性函数。

essayta™ 随机控制理论Stochastic Control作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。essayta™, 最高质量的随机控制理论Stochastic Control作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此随机控制理论Stochastic Control作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

essayta™ 为您的留学生涯保驾护航 在澳洲作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的随机控制理论Stochastic Control作业代写代写服务。我们的专家在澳洲代写方面经验极为丰富,各种随机控制理论Stochastic Control相关的作业也就用不着 说。

我们提供的随机控制理论Stochastic Control及其相关学科的代写,服务范围广, 其中包括但不限于:

金融代写|随机控制理论代写STOCHASTIC CONTROL代考|ECE684 N-cube implementation

金融代写|随机控制理论代写STOCHASTIC CONTROL代考|N-cube implementation

Our implementation includes 3 main kinds of arrays: MPI communication buffers, $N$-cube data maps and $\mathrm{N}$-cube data. We have used classic dynamic $\mathrm{C}$ arrays to implement the first kind, and the blitz++ generic C++ library [Veldhuizen (2001)] to implement the second and third kinds. However, in order to compile the same source code independently of the number of energy stocks to process, we have flattened the $\mathrm{N}$-cubes required by our algorithms. Any $\mathrm{N}$-dimensional array of stock point values becomes a one dimensional array of values. Our implementation includes the following kind of variables:

  • A stock level range is a one dimensional array of 2 values, implemented with a blitz: : Tinyvect or of 2 integer values.
  • The coordinates of a $N$-cube of stock points is an array of $N$ stock level ranges, implemented with a one dimensional blitz: : Array of $N$ blitz: : Tinyvector of 2 integer values.
  • A map of $N$-cube data is implemented with a two dimensional array of $P \times N$ stock level ranges. It is implemented with a two dimensional blitz::Array of blitz: : Tinyvector).
  • A Bellman value is depending on the stock point considered and on the alea considered. Our $\mathrm{N}$-cube data are arrays of Bellman values function of different aleas in a $\mathrm{N}$-cube of stock points. A $\mathrm{N}$-cube data is implemented with a two dimensional blitz: : Array of double: the first dimension index is the flattened $N$ dimensional coordinate of the stock point, and the second dimension index is the alea index.
  • Some one dimensional arrays of double are used to store data to send to or to receive from another node, and some two dimensional arrays of double are used to store data to send to or to receive from all computing nodes. Communications are implemented with the MPI library and its C API, that was available on all our testbed architectures. This API requires addresses of contiguous memory areas, to read data to send or to store received data. So, classic $\mathrm{C}$ dynamic arrays appeared a nice solution to implement communication buffers with sizes updated at each time step.

金融代写|随机控制理论代写STOCHASTIC CONTROL代考|MPI communications

Our distributed application consists in loops of local computations and internode communications, and communications have to be achieved before to run the next local computations. So, we do not attempt to overlap computations and communications. However, in a communication step each node can exchange messages with many others, so it is important to attempt to overlap all message exchanges and to avoid to serialize these exchanges.
When routing the Bellman values of the shadow region the communication schemes can be different on each node and at each time step (see sub-steps 5 of section $3.1$ and 2.e of section 3.2), and data to send is not contiguous in memory. So, we have not used collective communications (easier to use with regular communication schemes), but asynchronous MPI point-to-point communication routines. Our communication sub-algorithm is the following:

  • compute the size of each message to send or to receive,
  • allocate message buffers, for messages to send and to receive,
  • make local copy of data to send in the corresponding send buffers,
  • start all asynchronous MPI point-to-point receive and send operations,
  • wait until all receive operations have completed (synchronization operation),
  • store received data in the corresponding application variables (blitz++ arrays),
  • wait until all send operations have completed (synchronization operation),
  • delete all communication buffers.
金融代写|随机控制理论代写STOCHASTIC CONTROL代考|ECE684 N-cube implementation

随机控制理论代写

金融代写|随机控制理论代写STOCHASTIC CONTROL代考|N-cube implementation

我们的实现包括 3 种主要类型的数组: MPI 通信缓冲区, $N$-立方数据映射和 $\mathrm{N}$-立方体数据。我 们使用了经典的动态C数组来实现第一种, blitz++ 通用 C++ 库 [Veldhuizen (2001)] 来实现第二 种和第三种。然而, 为了独立于要处理的能源库存数量来编译相同的源代码, 我们们将 $\mathrm{N}$-我们算法 所需的立方体。任何 $\mathrm{N}$ 库存点值的维数组变为一维值数组。我们的实现包括以下类型的变量:

  • 库存水平范围是 2 个值的一维数组, 用 blitz: Tinyvect 或 2 个整数值实现。
    的坐标 $N$-股票点的立方体是一个数组 $N$ 库存水平范围, 通过一维门闪电战实现: :数
  • 组 $N$ 张地图 $N$ – 立方体㱫数据是用二维数组实现的 $P \times N$ 库存水平范围。它是用二维 blitz::Array of blitz::Tinyvector) 实现的。
    Bellman 值取决于所考层的库存点和所考虑的 alea 我们的 $N$ – 立方体数据是不同区 域的 Bellman 值函数的数组 $N$-库存点的立方体。 $\mathrm{AN}$ – 立方体数据是用二维闪电战实 alea指标。
    一些double的一维数组用于存储发送到另一个节点或从另一个节点接收的数据,, 些double的二维数信是通过于 MPI 存储发送到所有计算节点或从所有计算节点接收的数据。
    要连续内存区域的地址, 以读取豊发送的数据或在储接收到的数据。所以, 经典一C动
    态数组似乎是一个很好的解决方案, 可以实现在每个时间步更新大小的通信缓冲区。

金融代写|随机控制理论代写STOCHASTIC CONTROL代考|MPI communications

我们的分布式应用程序包含本地计算和节点间通信的循环, 并且必须在运行下一个本地计算之前 实现通信。因此, 我们不会尝试重叠计算和通信。然而, 在通信步骤中, 每个节点都可以与许多 其他节点交换消息, 因此尝试重叠所有消息交换并避免序列化这些交换很重要。
当路由阴影区域的 Bellman 值时, 每个节点和每个时间步长的通信方案可能不同(参见第 5 节的 子步骤3.1和 $3.2$ 节的 2.e), 并且要发送的数据在内存中不连续。因此, 我们没有使用集体通信 (更易于使用常规通信方案), 而是使用异步 MPI 点对点通信例程。我们的通信子算法如下:

  • 计算要发送或接收的每条消息的大小,
  • 分配消息缓冲区, 用于发送和接收消息,
  • 制作数据的本地副本以在相应的发送缓冲区中发送,
  • 启动所有异步 MPI 点对点接收和发送操作,
  • 等到所有接收操作完成 (同步操作),
  • 将接收到的数据存储在相应的应用程序变量 (blitz++ 数组) 中,
  • 等待所有发送操作完成 (同步操作),
  • 删除所有通信缓冲区。
金融代写|随机控制理论代写Stochastic Control代考

金融代写|随机控制理论代写Stochastic Control代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。



博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。



微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。



计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。



MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注