数学代写|线性规划代写Linear Programming代考|MATH417 Performance Measures

如果你也在 怎样代写线性规划Linear Programming MATH417这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。线性规划Linear Programming是一种在要求由线性关系表示的数学模型中实现最佳结果(如最大利润或最低成本)的方法。线性编程是数学编程(也被称为数学优化)的一个特例。

线性规划Linear Programming更正式地说,线性编程是一种优化线性目标函数的技术,受线性平等和线性不平等约束。它的可行区域是一个凸多面体,它是一个定义为有限多个半空间的交集的集合,每个半空间都由一个线性不等式定义。其目标函数是一个定义在这个多面体上的实值仿射(线性)函数。线性编程算法在多面体中找到一个点,在这个点上这个函数具有最小(或最大)的值,如果这样的点存在的话。

线性规划Linear Programming代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的线性规划Linear Programming作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此线性规划Linear Programming作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

海外留学生论文代写;英美Essay代写佼佼者!

EssayTA有超过2000+名英美本地论文代写导师, 覆盖所有的专业和学科, 每位论文代写导师超过10,000小时的学术Essay代写经验, 并具有Master或PhD以上学位.

EssayTA™在线essay代写、散文、论文代写,3分钟下单,匹配您专业相关写作导师,为您的留学生涯助力!

我们拥有来自全球顶级写手的帮助,我们秉承:责任、能力、时间,为每个留学生提供优质代写服务

论文代写只需三步, 随时查看和管理您的论文进度, 在线与导师直接沟通论文细节, 在线提出修改要求. EssayTA™支持Paypal, Visa Card, Master Card, 虚拟币USDT, 信用卡, 支付宝, 微信支付等所有付款方式.

数学代写|线性规划代写Linear Programming代考|MATH417 Performance Measures

数学代写|线性规划代写Linear Programming代考|Performance Measures

Performance measures can be broadly divided into two types:

worst case

average case.
As its name implies, a worst-case analysis looks at all problems of a given “size” and asks how much effort is needed to solve the hardest of these problems. Similarly, an average-case analysis looks at the average amount of effort, averaging over all problems of a given size. Worst-case analyses are generally easier than average-case analyses. The reason is that, for worst-case analyses, one simply needs to give an upper bound on how much effort is required and then exhibit a specific example that attains this bound. However, for average-case analyses, one must have a stochastic model of the space of “random linear programming problems” and then be able to say something about the solution effort averaged over all the problems in the sample space. There are two serious difficulties here. The first is that it is not clear at all how one should model the space of random problems. Secondly, given such a model, one must be able to evaluate the amount of effort required to solve every problem in the sample space.

Therefore, worst-case analysis is more tractable than average-case analysis, but it is also less relevant to a person who needs to solve real problems. In this chapter, we shall give a worst-case analysis of the simplex method. Later, in Chapter 12, we shall present results of empirical studies that indicate the average behavior over finite sets of real problems. Such studies act as a surrogate for a true average-case analysis.

数学代写|线性规划代写Linear Programming代考|Measuring the Size of a Problem

Before looking at worst cases, we must discuss two issues. First, how do we specify the size of a problem? Two parameters come naturally to mind: $m$ and $n$.

Usually, we shall simply use these two numbers to characterize the size a problem. However, we should mention some drawbacks associated with this choice. First of all, it would be preferable to use only one number to indicate size. Since the data for a problem consist of the constraint coefficients together with the right-hand side and objective function coefficients, perhaps we should use the total number of data elements, which is roughly $m n$.

The product $m n$ isn’t bad, but what if many or even most of the data elements are zero? Wouldn’t one expect such a problem to be easier to solve? Efficient implementations do indeed take advantage of the presence of lots of zeros, and so an analysis should also account for this. Hence, a good measure might be simply the number of nonzero data elements. This would definitely be an improvement, but one can go further. On a computer, floating-point numbers are all the same size and can be multiplied in the same amount of time. But if a person is to solve a problem by hand (or use unlimited precision computation on a computer), then certainly multiplying 23 by 7 is a lot easier than multiplying $23453.2352$ by $86833.245643$. So perhaps the best measure of a problem’s size is not the number of data elements, but the actual number of bits needed to store all the data on a computer. This measure is popular among most computer scientists and is usually denoted by $L$.

数学代写|线性规划代写Linear Programming代考|MATH417 Performance Measures

线性规划代写

数学代写|线性规划代写Linear Programming代考|Performance Measures

绩效指标大致可分为两类:

最差的情况

平均情况。
顾名思义,最坏情况分析着眼于给定“规模”的所有问题,并询问解决这些问题中最困难的问题需要付出多少努力。同样,平均案例分析着眼于平均工作量,对给定规模的所有问题进行平均。最坏情况分析通常比平均情况分析更容易。原因是,对于最坏情况分析,只需给出需要多少努力的上限,然后展示达到该上限的具体示例。然而,对于平均案例分析,必须有一个“随机线性规划问题”空间的随机模型,然后才能说明样本空间中所有问题的平均解决方案。这里有两个严重的困难。首先是完全不清楚应该如何为随机问题的空间建模。其次,给定这样一个模型,必须能够评估解决样本空间中的每个问题所需的工作量。

因此,最坏情况分析比平均情况分析更容易处理,但对于需要解决实际问题的人来说也不太相关。在本章中,我们将对单纯形法进行最坏情况分析。稍后,在第 12 章中,我们将介绍实证研究的结果,这些研究表明实际问题的有限集上的平均行为。此类研究可替代真实的平均案例分析。

数学代写|线性规划代写Linear Programming代考|Measuring the Size of a Problem

在查看最坏情况之前,我们必须讨论两个问题。首先,我们如何指定问题的大小?自然而然地想到两个参数:米和n.

通常,我们将简单地使用这两个数字来表征问题的大小。但是,我们应该提到与此选择相关的一些缺点。首先,最好只使用一个数字来表示大小。由于问题的数据由约束系数以及右侧和目标函数系数组成,也许我们应该使用数据元素的总数,大致为米n.

产品米n不错,但是如果许多甚至大部分数据元素为零怎么办?难道人们不希望这样的问题更容易解决吗?高效的实现确实利用了大量零的存在,因此分析也应该考虑到这一点。因此,一个好的度量可能只是非零数据元素的数量。这肯定是一种改进,但可以更进一步。在计算机上,浮点数的大小都相同,并且可以在相同的时间内相乘。但是如果一个人要手工解决一个问题(或者在计算机上使用无限精度计算),那么肯定 23 乘以 7 比乘以 7 要容易得多23453.2352经过86833.245643. 因此,也许衡量问题大小的最佳方法不是数据元素的数量,而是在计算机上存储所有数据所需的实际位数。这种度量在大多数计算机科学家中很流行,通常表示为大号.

数学代写|线性规划代写Linear Programming代考

数学代写|线性规划代写Linear Programming代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。



博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。



微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。



计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。



MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注