数学代写|数值分析代写Numerical analysis代考|STAT360 Relaxation and Newton’s method

如果你也在 怎样代写数值分析Numerical analysis STAT360这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。数值分析Numerical analysis是数学的一个分支,使用数字近似法解决连续问题。它涉及到设计能给出近似但精确的数字解决方案的方法,这在精确解决方案不可能或计算成本过高的情况下很有用。

数值分析Numerical analysis是研究使用数值近似的算法(相对于符号操作)来解决数学分析的问题(区别于离散数学)。它是研究试图寻找问题的近似解而不是精确解的数值方法。数值分析在工程和物理科学的所有领域都有应用,在21世纪还包括生命科学和社会科学、医学、商业甚至艺术领域。目前计算能力的增长使得更复杂的数值分析的使用成为可能,在科学和工程中提供详细和现实的数学模型。数值分析的例子包括:天体力学中的常微分方程(预测行星、恒星和星系的运动),数据分析中的数值线性代数,以及用于模拟医学和生物学中活细胞的随机微分方程和马尔科夫链。

数值分析Numerical analysis代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的数值分析Numerical analysis作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此数值分析Numerical analysis作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

海外留学生论文代写;英美Essay代写佼佼者!

EssayTA有超过2000+名英美本地论文代写导师, 覆盖所有的专业和学科, 每位论文代写导师超过10,000小时的学术Essay代写经验, 并具有Master或PhD以上学位.

EssayTA™在线essay代写、散文、论文代写,3分钟下单,匹配您专业相关写作导师,为您的留学生涯助力!

我们拥有来自全球顶级写手的帮助,我们秉承:责任、能力、时间,为每个留学生提供优质代写服务

论文代写只需三步, 随时查看和管理您的论文进度, 在线与导师直接沟通论文细节, 在线提出修改要求. EssayTA™支持Paypal, Visa Card, Master Card, 虚拟币USDT, 信用卡, 支付宝, 微信支付等所有付款方式.

数学代写|数值分析代写Numerical analysis代考|STAT360 Relaxation and Newton’s method

数学代写|数值分析代写Numerical analysis代考|Relaxation and Newton’s method

We now go on to apply the ideas developed in the previous section to the construction of an iteration which converges to a solution of the equation $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$, where $\boldsymbol{f}: \mathbb{R}^n \rightarrow \mathbb{R}^n$. One way of constructing such a sequence is by relaxation.
Definition $4.4$ The recursion
$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\lambda \boldsymbol{f}\left(\boldsymbol{x}^{(k)}\right), \quad k=0,1,2, \ldots,
$$
where $\boldsymbol{x}_0 \in \mathbb{R}^n$ is given and where $\lambda \neq 0$ is a constant, is called simultaneous relaxation.

Suppose that the sequence $\left(\boldsymbol{x}^{(k)}\right)$ converges to a limit $\boldsymbol{\xi} \in \mathbb{R}^n$ and $\boldsymbol{f}$ is continuous in a neighbourhood of $\boldsymbol{\xi}$; then, on passing to the limit $k \rightarrow \infty$ in (4.16), we deduce that $\boldsymbol{\xi}$ is a solution of the equation $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$.
Simultaneous relaxation is evidently a simultaneous iteration defined by taking $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}-\lambda \boldsymbol{f}(\boldsymbol{x})$.

数学代写|数值分析代写Numerical analysis代考|Global convergence

Much of the discussion of the global convergence of Newton’s method for a single equation in Section $1.7$ applies, with obvious changes, in the case of several variables. If the system has several solutions, $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \ldots$, we can define the corresponding sets $S_1, S_2, \ldots$ in $\mathbb{R}^n$ so that $S_j$ comprises those starting points from which Newton’s method converges to $\boldsymbol{\xi}_j$. As before, the sets $S_j, j=1,2, \ldots$, have the property that any point on the boundary of one of the sets is also on the boundary of the others. The difference now is that for systems of equations in $\mathbb{R}^n, n \geq 2$, these sets can be much more complicated than in the case of a single equation on the real line $\mathbb{R}^1=\mathbb{R}$.

To illustrate this point for $n=2$, we return to our earlier example problem, Example $1.7$ from Chapter 1, but now extend it to complex variables, so we require to solve $\mathrm{e}^z-z-2=0$ for the complex number $z=x+\imath y$. Separating this equation into real and imaginary parts we obtain a system of two nonlinear equations for the unknowns $x_1=x$ and $x_2=y$. The system has the two real solutions which we found in Chapter 1, and also an infinite number of complex solutions. It is easy to see from the periodic character of $\mathrm{e}^{\imath y}$ that the equation has a solution near $w_m=\left(2 m+\frac{1}{2}\right) \imath \pi, \imath=\sqrt{-1}$, for integer values of $m$; a better estimate is given in Exercise 9. It is a good deal more difficult to prove that there are no other solutions.

The behaviour of Newton’s method for this problem may be illustrated by showing a picture of the complex plane, with the sets $S_j$ depicted in different colours. In our example we cannot, of course, show more than a small number of the solutions, and cannot use an infinite number of colours. We have therefore coloured the sets with six colours cyclically, so that, for example, the sets $S_1, S_7, S_{13}, \ldots$ have the same colour. The background colour, white, represents the set $S_1$ of points from which the iteration converges to the real negative root. It includes most of the negative half-plane. Successive pictures in the series from Figure 4.5 to Figure $4.9$ show a magnified view of a small region of the previous picture, the region being outlined in black. In Figure $4.4$ the black crosses mark the positions of solutions of $f(z)=0$. The pictures show in a striking way the fractal behaviour of the boundary of a set. Figure $4.9$ is very similar to Figure 4.5; the former is a magnified view of a small part of Figure 4.5, with a magnification of about 50000 in each direction. The same sort of behaviour is repeated when the picture is magnified indefinitely.

数学代写|数值分析代写Numerical analysis代考|STAT360 Relaxation and Newton’s method

数值分析代写

数学代写|数值分析代㝍Numerical analysis代考|Relaxation and Newton’s method


我们现在继续将上一节中提出的想法应用到迭代的构造中, 该迭代收敛到方程的解 $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$, 在哪里 $f: \mathbb{R}^n \rightarrow \mathbb{R}^n$.构建此类序列的一种方法是松弛。
定义 4.4递归
$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\lambda \boldsymbol{f}\left(\boldsymbol{x}^{(k)}\right), \quad k=0,1,2, \ldots,
$$
在哪里 $\boldsymbol{x}0 \in \mathbb{R}^n$ 给出和在哪里 $\lambda \neq 0$ 是常数, 称为同时弛豫。 假设序列 $\left(\boldsymbol{x}^{(k)}\right)$ 收敛到一个极限 $\boldsymbol{\xi} \in \mathbb{R}^n$ 和 $\boldsymbol{f}$ 在邻域内是连续的 $\boldsymbol{\xi}$; 然后, 在传递到极限 $k \rightarrow \infty$ 在 (4.16) 中, 浅们推导出 $\boldsymbol{\xi}$ 是方程的解 $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$. 同时松弛显然是通过采取定义的同时迭代 $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}-\lambda \boldsymbol{f}(\boldsymbol{x})$.

数学代写|数值分析代㝍Numerical analysis代考|Global convergence

部分中对单方程牛顿法全局收敛性的大部分讨论 $1.7$ 适用于多个变量的情况, 但有明显的变化。如果系统有 多个解, $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \ldots$, 我们可以定义相应的集合 $S_1, S_2, \ldots$ 在 $\mathbb{R}^n$ 以便 $S_j$ 包括牛顿法收敛到的那些起点 $\boldsymbol{\xi}_j$. 和以前一样, 集合 $S_j, j=1,2, \ldots$, 具有这样的性质, 其中一个集合的边界上的任何点也在其他集合的边 界上。现在的不同之处在于, 对于方程组 $\mathbb{R}^n, n \geq 2$, 这些集合可能比实线上的单个方程䀢杂得多 $\mathbb{R}^1=\mathbb{R}$ 为了说明这一点 $n=2$, 我们回到我们之前的示例问题, Example1.7来自第 1 章, 但现在将其扩展到复杂 变量, 因此我们需要解决 $\mathrm{e}^z-z-2=0$ 对于复数 $z=x+\imath y$. 将这个方程分成实部和虚部, 我们得到一 个由两个末知数的非线性方程组成的系统 $x_1=x$ 和 $x_2=y$. 该系统具有我们在第 1 章中找到的两个实数 解, 以及无数个复数解。从周期性特征不难看出 $\mathrm{e}^{\mathrm{xy}}$ 该方程在附近有一个解 $w_m=\left(2 m+\frac{1}{2}\right) \imath \pi, \imath=\sqrt{-1}$, 对于整数值 $m$; 练习 9 中给出了更好的估计。要证明没有其他解要困难 得多。 牛顿法解决这个问题的行为可以通过显示复平面的图片来说明, 其中集合 $S_j$ 用不同的颜色描绘。当然, 在我 们的示例中, 我们只能展示少量的解决方案, 并且不能使用无限多的颜色。因此, 我们循环地用六种颜色给 集合着色, 这样, 例如, 集合 $S_1, S_7, S{13}, \ldots$ 有相同的颜色。背景颜色为白色, 代表集合 $S_1$ 迭代收敛到实 负根的点数。它包括大部分的负半平面。图4.5到图系列中的连续图片 $4.9$ 显示上一张图片的一个小区域的放 大视图, 该区域以黑色勾勒出轮廓。在图中 $4.4$ 黑色十字标记解决方安的位置 $f(z)=0$. 这些图片以引人注 目的方式显示了集合边界的分形行为。数字 $4.9$ 与图 $4.5$ 非常相似; 前者是图4.5的一小部分放大图, 每个方 向放大 50000 左右。当图片被无限放大时, 同样的行为会重敗出现。

数学代写|数值分析代写Numerical analysis代考

数学代写|数值分析代写Numerical analysis代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。



博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。



微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。



计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。



MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注