机器学习代考_Machine Learning代考_COMP5318 Counterfactual Guided by Prototypes

如果你也在 怎样代写机器学习Machine Learning COMP5318这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。机器学习Machine Learning学习算法的工作基础是,过去行之有效的策略、算法和推论有可能在未来继续行之有效。这些推论可以是显而易见的,例如 “由于在过去的一万天里,太阳每天早上都会升起,所以它可能在明天早上也会升起”。它们可以是细微的,例如 “X%的家族有地理上独立的物种,有颜色变异,所以有Y%的机会存在未被发现的黑天鹅”。

机器学习Machine Learning程序可以在没有明确编程的情况下执行任务。它涉及到计算机从提供的数据中学习,从而执行某些任务。对于分配给计算机的简单任务,有可能通过编程算法告诉机器如何执行解决手头问题所需的所有步骤;就计算机而言,不需要学习。对于更高级的任务,由人类手动创建所需的算法可能是一个挑战。在实践中,帮助机器开发自己的算法,而不是让人类程序员指定每一个需要的步骤,可能会变得更加有效 。

essayta.com机器学习Machine Learning代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。essayta.com™, 最高质量的机器学习Machine Learning作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此机器学习Machine Learning作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

essayta.com™ 为您的留学生涯保驾护航 在澳洲代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的澳洲代写服务。我们的专家在机器学习Machine Learning代写方面经验极为丰富,各种机器学习Machine Learning相关的作业也就用不着 说。

机器学习代考_Machine Learning代考_COMP5318 Counterfactual Guided by Prototypes

机器学习代考_Machine Learning代考_Counterfactual Guided by Prototypes

This algorithm is an extension of the counterfactual explanation algorithm. It generates the counterfactuals using class prototypes.

The key insight of this formulation is the need to design an objective function that allows you to generate high-quality counterfactual instances.
A counterfactual instance should have the following desirable properties.

The model prediction should be near the predefined output.

The perturbation changing the original instance $x$ to $x^{\prime}$ should be sparse.

The counterfactual needs to be interpretable.

The counterfactual needs to be found fast enough so that it can be applied in a real-life setting.

DiCE can generate multiple counterfactuals that are diverse from each other but as close as possible to the original instance. Therefore, in the loss function, the following components are added.

Distance between desired class and modeled class of a counterfactual

Distance between different counterfactuals to ensure diversity between them

Distance between counterfactual and original instance to ensure the feasibility of the counterfactual
In this case, sparsity is controlled on a post hoc basis. As a result, in this algorithm, you can select the features required to be changed to generate counterfactuals.

机器学习代考_Machine Learning代考_Comparison Between the Algorithms

This section compares various algorithms to determine and suggest to users a method to generate counterfactuals on their data. The comparison is made across various metrics such as time taken, sparsity of output, $\%$ of explanations generated, approach for categorical variables, similarity, and others. The metrics are mentioned in Table 11-1.

The algorithms were tested on the same online shoppers’ intention data set, mentioned at the start of Chapter 9 . The machine was an 8 GB RAM Apple MacBook. No parallelization was applied. The results were generated instance by instance.
Notes:

Time is tested on different ranges of probabilities ( 6 to 10 total instances were tested)

Sparsity: High means it is changing lesser number of variables and vice-versa

\% reported as per the sample of ten observations used for testing

Indicator function: any change in the value of the categorical variable is considered as distance 1
Based on the evaluation, we feel DiCE is an algorithm that can be used across many use cases. DiCE is covered next.

机器学习代考_Machine Learning代考_COMP5318 Counterfactual Guided by Prototypes

机器学习代考

机器学习代考机器学习代考原型指导下的反事实算法

该算法是反事实解释算法的扩展。它使用类原型生成反事实。

这种表述的关键见解是需要设计一个目标函数,使你能够生成高质量的反事实实例。
一个反事实的实例应该具有以下理想的特性。

模型的预测应该接近预定的输出。

改变原始实例$x$到$x^{prime}$的扰动应该是稀疏的。

反事实需要是可解释的。

反事实需要找到足够快的速度,以便能够在现实生活中应用。

DiCE可以生成多个不同的反事实,但尽可能地接近原始实例。因此,在损失函数中,加入了以下成分。

希望的类别与反事实的模型类别之间的距离

不同反事实之间的距离,以确保它们之间的多样性

反事实与原始实例之间的距离,以确保反事实的可行性
在这种情况下,稀疏性是在事后控制的。因此,在这个算法中,你可以选择需要改变的特征来生成反事实。

机器学习代考机器学习代考算法之间的比较

本节对各种算法进行了比较,以确定并向用户建议一种在其数据上生成反事实的方法。这种比较是通过各种指标进行的,如所需时间、输出的稀疏程度、生成的解释的$%$、分类变量的方法、相似性等。表11-1中提到了这些指标。

这些算法在第九章开始提到的相同的网上购物者意向数据集上进行了测试。机器是一台8GB内存的苹果MacBook。没有应用并行化。结果是逐个实例产生的。
注释。

时间是在不同的概率范围内测试的(总共测试了6到10个实例)。

稀疏性。高意味着它正在改变较少的变量数量,反之亦然。

\根据用于测试的10个观察样本报告的%。

指标函数:分类变量值的任何变化都被认为是距离1。
根据评估,我们觉得DiCE是一种可以在许多用例中使用的算法。接下来将介绍DiCE。

计算机代写|机器学习代考MACHINE LEARNING代写

计算机代写|机器学习代考MACHINE LEARNING代写 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。



博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。



微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。



计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。



MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注