物理代写|量子力学代写Quantum mechanics代考|KYA321 QM from one angstrom to the Planck scale

如果你也在 怎样代写量子力学Quantum mechanics KYA321这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。量子力学Quantum mechanics在理论物理学中,量子场论(QFT)是一个结合了经典场论、狭义相对论和量子力学的理论框架。QFT在粒子物理学中用于构建亚原子粒子的物理模型,在凝聚态物理学中用于构建准粒子的模型。

量子力学Quantum mechanics产生于跨越20世纪大部分时间的几代理论物理学家的工作。它的发展始于20世纪20年代对光和电子之间相互作用的描述,最终形成了第一个量子场理论–量子电动力学。随着微扰计算中各种无限性的出现和持续存在,一个主要的理论障碍很快出现了,这个问题直到20世纪50年代随着重正化程序的发明才得以解决。第二个主要障碍是QFT显然无法描述弱相互作用和强相互作用,以至于一些理论家呼吁放弃场论方法。20世纪70年代,规整理论的发展和标准模型的完成导致了量子场论的复兴。

量子力学Quantum mechanics代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的量子力学Quantum mechanics作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此量子力学Quantum mechanics作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

海外留学生论文代写;英美Essay代写佼佼者!

EssayTA有超过2000+名英美本地论文代写导师, 覆盖所有的专业和学科, 每位论文代写导师超过10,000小时的学术Essay代写经验, 并具有Master或PhD以上学位.

EssayTA™在线essay代写、散文、论文代写,3分钟下单,匹配您专业相关写作导师,为您的留学生涯助力!

我们拥有来自全球顶级写手的帮助,我们秉承:责任、能力、时间,为每个留学生提供优质代写服务

论文代写只需三步, 随时查看和管理您的论文进度, 在线与导师直接沟通论文细节, 在线提出修改要求. EssayTA™支持Paypal, Visa Card, Master Card, 虚拟币USDT, 信用卡, 支付宝, 微信支付等所有付款方式.

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在物理Physical代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的物理Physical代写服务。我们的专家在量子力学Quantum mechanics代写方面经验极为丰富,各种量子力学Quantum mechanics相关的作业也就用不着说。

物理代写|量子力学代写Quantum mechanics代考|KYA321 QM from one angstrom to the Planck scale

物理代写|量子力学代写Quantum mechanics代考|QM from one angstrom to the Planck scale

In the 20th century tremendous progress was made in Physics. In Fig.1.8 the evolution of the fundamental theories which describe natural phenomena is given along with the interconnections which exist between these theories. Historically new insight emerged when apparent contradictions arose between theoretical formulations of the physical world. In each case the reconciliation required a better theory, often involving radical new concepts and striking experimental predictions. The major advances were the discoveries of special relativity, quantum mechanics, general relativity, and quantum field theory. All of these are the ingredients of the Standard Model, which is a special quantum field theory, that explains natural phenomena accurately down to $10^{-17} \mathrm{~cm}$. The question mark refers to the current status of String Theory which attempts to unify all interactions. These advances were accompanied by an understanding that Nature is described by mathematical equations that have very deep and very beautiful symmetries. In fact, the fundamental physical principles are embodied by the symmetries.

As discussed in this chapter, Quantum Mechanics was born when Planck discovered that he needed to introduce the fundamental constant $\hbar$ in order to understand the thermodynamics and statistical mechanics of black body radiation. To do so he had to abandon certain concepts in classical mechanics and introduce the concept of quantized energy.

Special Relativity developed when Einstein understood the relationship between the symmetries of Maxwell’s equations, which describe the properties of light, and those of classical mechanics. He had to introduce the then radical concept that the velocity of light is a constant as observed from any moving frame. In Special Relativity, one considers two observers that are in relative motion to each other with velocity $\mathbf{v}_{\text {rel }}$ as in Fig.1.9.

物理代写|量子力学代写Quantum mechanics代考|Problems

Consider the Hamiltonian
$$
H=\mathbf{p}^2 / 2 m+\gamma|\mathbf{r}| .
$$
Using Bohr’s method compute the quantized energy levels for circular orbits.

Consider the Hamiltonian
$$
H=c|\mathbf{p}|+\gamma|\mathbf{r}|
$$
and its massive version
$$
H=\left(\mathbf{p}^2 c^2+m^2 c^4\right)^{1 / 2}+\gamma|\mathbf{r}|
$$
What are the quantized energy levels for circular orbits according to Bohr’s method?

According to the non-relativistic quark model, the strong interactions between heavy quarks and anti-quarks (charm, bottom and top) can be approximately described by a non-relativistic Hamiltonian of the form
$$
H=m_1 c^2+m_2 c^2+\mathbf{p}^2 / 2 m+\gamma|\mathbf{r}|-\alpha /|\mathbf{r}|,
$$
where $m=m_1 m_2 /\left(m_1+m_2\right)$ is the reduced mass, and $\mathbf{p}, \mathbf{r}$ are the relative momentum and position in the center of mass ( $H$ may be interpreted as the mass of the state, i.e. $H=M c^2$ since it is given in the center of mass). The combination of linear and Coulomb potentials is an approximation to the much more complex chromodynamics (QCD) interaction which confines the quarks inside baryons and mesons. Note that $\gamma, \alpha$ are positive, have the units of (energy/distance) $=$ force, and (energy $\times$ distance) respectively, and therefore they may be given in units of $\gamma \sim(\mathrm{GeV} / \mathrm{fermi})$ and $\alpha \sim(G e V \times f e r m i)$ that are typical of strong interactions. Apply Bohr’s quantization rules to calculate the energy levels for circular orbits of the quarks. Note that we may expect that this method would work for large quantum numbers. What is the behavior of the energy as a function of $n$ for large $n$ ? What part of the potential dominates in this limit?

Light quarks (up, down, strange) move much faster inside hadrons. The potential approach is no longer a good description. However, as a simple model one may try to use the relativistic energy in the Hamiltonian (in the rest mass of the system $H=M c^2$ )
$$
H=\left(\mathbf{p}^2 c^2+m_1^2 c^4\right)^{1 / 2}+\left(\mathbf{p}^2 c^2+m_2^2 c^4\right)^{1 / 2}+\gamma|\mathbf{r}|-\alpha /|\mathbf{r}|
$$

物理代写|量子力学代写Quantum mechanics代考|KYA321 QM from one angstrom to the Planck scale

量子力学代写

物理代写|量子力学代写Quantum mechanics代考|QM from one angstrom to the Planck scale


20 世纪物理学取得了巨大进步。图 $1.8$ 给出了描述自然现象的基本理论的演变以及这些理论之间存在的相 互联系。当物理世界的理论表述之间出现明显的矛盾时, 历史上出现了新的见解。在每种情况下, 和解都需 要更好的理论, 通常涉及激进的新概念和引人注目的实验预测。主要的进步是狭义相对论、鲤子力学、广义 相对论和䵡子场论的发现。所有这些都是标准模型的组成部分,标准模型是一种特殊的量子场论, 可以准确 地解释自然现象到 $10^{-17} \mathrm{~cm}$. 问号是指试图统一所有交互的弦理论的当前㚭态。这些进步伴随着一种理 解, 即自然是由具有非常深刻和非常美丽的对称性的数学方程式描述的。事实上, 基本的物理原理体现在对 称性上。
正如本章所讨论的, 当普朗克发现他需要引入基本常数时, 䵡子力学诞生了ћ为了了解黑体辐射的热力学和 统计力学。为此, 他不得不放弃经典力学中的某些概念, 引入䵡子化能荲的概念。
当爱因斯坦理解描述光的性质的麦克斯韦方程组的对称性与经典力学的对称性之间的关系时, 狭义相对论得 到了发展。他不得不引入当时激进的概念,即从任何运动框架观察到的光速都是常数。在犾义相对论中, 考 虑两个以速度相对运动的观察者 $\mathbf{v}_{\mathrm{rel}}$ 如图 1.9 所示。


物理代写|量子力学代写 Quantum mechanics代考|Problems


考虑哈密顿荲
$$
H=\mathbf{p}^2 / 2 m+\gamma|\mathbf{r}| .
$$
使用玻尔方法计算圆形轨道的鲤化能级。
考虑哈密顿黑
$$
H=c|\mathbf{p}|+\gamma|\mathbf{r}|
$$
及其大型版本
$$
H=\left(\mathbf{p}^2 c^2+m^2 c^4\right)^{1 / 2}+\gamma|\mathbf{r}|
$$
根据玻尔方法, 圆形轨道的疃子化能级是多少?
根据非相对论夸克模型,重夸克和反夸克(魅力夸克、底夸克和顶夸克)之间的强相互作用可以近似地用以 下形式的非相对论哈密顿䵡来描述
$$
H=m_1 c^2+m_2 c^2+\mathbf{p}^2 / 2 m+\gamma|\mathbf{r}|-\alpha /|\mathbf{r}|,
$$
在哪里 $m=m_1 m_2 /\left(m_1+m_2\right)$ 是减少的质黑, 并且 $\mathbf{p}, \mathbf{r}$ 是质心的相对动荲和位置 ( $H$ 可以解释为状态 的质荲, 即 $H=M c^2$ 因为它是在质心给出的) 。线性势和库仑势的组合近似于更复杂的色动力学 (QCD) 相互作用, 后者将夸克限制在重子和介子内。注意 $\gamma, \alpha$ 为正, 单位为 (能荲 /距离) $=$ 力, 和 (能䵡 $\times$ 距 离) 分别, 因此它们可以以单位给出 $\gamma \sim(\mathrm{GeV} / \mathrm{fermi})$ 和 $\alpha \sim(\mathrm{GeV} \times f e r m i)$ 这是典型的强相互作 用。应用玻尔的䵡化规则来计算夸克圆轨道的能级。请注意, 我们可能期望此方法适用于大䵡子数。能黑的 行为是什么 $n$ 对于大 $n$ ? 在这个极限中, 哪一部分执能占主导地位?
轻夸克 (上夸克、下夸克、奇夸克) 在强子内部移动得更快。潜在的方法不再是一个好的描述。然而, 作为 一个简单的模型, 人们可以尝试使用哈密顿荲中的相对论能荲 (在系统的静止质荲中 $H=M c^2$ )
$$
H=\left(\mathbf{p}^2 c^2+m_1^2 c^4\right)^{1 / 2}+\left(\mathbf{p}^2 c^2+m_2^2 c^4\right)^{1 / 2}+\gamma|\mathbf{r}|-\alpha /|\mathbf{r}|
$$

物理代写|量子力学代写Quantum mechanics代考

物理代写|量子力学代写Quantum mechanics代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。



博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。



微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。



计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。



MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注