数学代写|抽象代数作业代写Abstract Algebra代考|MATH411 Why negative powers are needed

如果你也在 怎样代写抽象代数abstract algebra MATH411这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。抽象代数abstract algebra是数学的一个分支,处理符号和操作这些符号的规则。在初级代数中,这些符号(今天写成拉丁字母和希腊字母)代表没有固定数值的量,称为变量。

抽象代数abstract algebra代数这个词不仅用于命名数学的一个领域和一些子领域,它还用于命名一些种类的代数结构,如一个场上的代数,通常称为代数。有时,同一短语也用于一个子领域及其主要代数结构;例如,布尔代数和布尔代数。一个专门研究代数的数学家被称为代数学家。

essayta.™抽象代数abstract algebra代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。essayta.™, 最高质量的抽象代数abstract algebra作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此抽象代数abstract algebra作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

essayta.™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在抽象代数abstract algebra代写方面经验极为丰富,各种抽象代数abstract algebra相关的作业也就用不着 说。

我们提供的抽象代数abstract algebra MATH763及其相关学科的代写,服务范围广, 其中包括但不限于:

数学代写|抽象代数作业代写Abstract Algebra代考|MATH411 Why negative powers are needed

数学代写|抽象代数作业代写Abstract Algebra代考|Partitioning the domain

In Example $13.15$, we considered $4 \in U_{13}$ with ord(4) $=6$. We found that $\langle 4\rangle=$ $\left{4^k \mid k \in \mathbb{Z}\right}$ contains just the elements $4^0, 4^1, 4^2, 4^3, 4^4, 4^5$, even though the set $\langle 4\rangle$, by definition, contains all integer powers of 4 . In light of this and other similar examples that we studied in Chapter 13, it’s natural to wonder why the negative powers of $g$ are needed in $\langle g\rangle=\left{g^k \mid k \in \mathbb{Z}\right}$. The example below answers this question.

Example 14.1. Recall that $\mathbb{R}^={a \in \mathbb{R} \mid a$ has a multiplicative inverse $}$. We’ve seen that $\mathbb{R}^$ contains all non-zero real numbers and is a group under multiplication. Let $H$ be the smallest subgroup of $\mathbb{R}^*$ that contains the element 3. By closure, $H$ must also contain $3 \cdot 3=9,3 \cdot 3 \cdot 3=27,3^4=81$, and all positive powers of 3 . $H$ must also contain the multiplicative identity 1 . Moreover, $H$ must contain the multiplicative inverses of its elements, i.e., $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}$, and so on. Therefore,
$$
\begin{aligned}
H &=\left{\ldots, \frac{1}{81}, \frac{1}{27}, \quad \frac{1}{9}, \quad \frac{1}{3}, 1,3,9,27,81, \ldots\right} \
&=\left{\ldots, 3^{-4}, 3^{-3}, 3^{-2}, 3^{-1}, 3^0, 3^1, 3^2, 3^3, 3^4, \ldots\right} \
&=\left{3^k \mid k \in \mathbb{Z}\right} \
&=\langle 3\rangle,
\end{aligned}
$$
so that $H=\langle 3\rangle$, where $\langle 3\rangle$ must contain both positive and negative powers of 3 (as well as $\left.3^0=1\right)$

In Example $14.1$ above, we notice that the integer powers of 3 are distinct from each other. This is because ord(3) is infinite; i.e., there is no positive integer $n$ such that $3^n=1$ in $\mathbb{R}^*$. Then Theorem $12.29$ allows us to conclude that $3^k=3^{\ell}$ if and only if $k=\ell$ in $\mathbb{Z}$. Contrast this to the case of $4 \in U_{13}$. Since ord(4) $=6$, Theorem $13.12$ implies that $4^k=4^{\ell}$ if and only if $k=\ell$ in $\mathbb{Z}_6$.

Before proceeding, we state the result of Chapter 13, Exercise #16 as a theorem. This theorem explains why we call $\langle g\rangle$ the cyclic subgroup generated by $g$.

数学代写|抽象代数作业代写ALGEBRA代考|Additive groups revisited

In Section 13.5, we adapted the notation $\langle g\rangle=\left{g^k \mid k \in \mathbb{Z}\right}$ when the group operation is addition. Consider again the additive group $\mathbb{Z}{12}$ and recall that 1 is a generator, because: $$ 1=1,1+1=2,1+1+1=3,1+1+1+1=4, \ldots, \underbrace{1+1+\cdots+1}{12 \text { terms }}=0 .
$$
Writing this more succinctly as
$$
1 \cdot 1=1,2 \cdot 1=2,3 \cdot 1=3,4 \cdot 1=4, \ldots, 12 \cdot 1=0,
$$

we obtained the definition $\langle 1\rangle={k \cdot 1 \mid k \in \mathbb{Z}}$. In other words, $\langle 1\rangle$ includes all integer multiples of 1 , rather than all integer powers of 1 . We conclude that $\mathbb{Z}{12}$ is cyclic with $\mathbb{Z}{12}=\langle 1\rangle$

For the finite group $\mathbb{Z}_{12}=\langle 1\rangle$, we only need positive multiples of 1 . But for the infinite group $\mathbb{Z}$, we do need positive and negative multiples of 1 (as well as $0 \cdot 1=0$ ). Indeed, we have
$$
\begin{aligned}
\mathbb{Z} &={\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots} \
&={\ldots,-4 \cdot 1,-3 \cdot 1,-2 \cdot 1,-1 \cdot 1,0 \cdot 1,1 \cdot 1,2 \cdot 1,3 \cdot 1,4 \cdot 1, \ldots} \
&={k \cdot 1 \mid k \in \mathbb{Z}} \
&=\langle 1\rangle,
\end{aligned}
$$
so that $\mathbb{Z}=\langle 1\rangle$. We also have $\mathbb{Z}=\langle-1\rangle={k \cdot(-1) \mid k \in \mathbb{Z}}$, so that 1 and $-1$ are both generators of the cyclic group $\mathbb{Z}$. Note that Theorem $14.5$, when adapted for additive groups, says $\langle g\rangle=\langle-g\rangle$. Thus we would expect $\langle 1\rangle=\langle-1\rangle$. You should convince yourself that $\mathbb{Z}$ has no other generator.

数学代写|抽象代数作业代写Abstract Algebra代考|MATH411 Why negative powers are needed

抽象代数代写

数学代写|抽象代数作业代写Abstract Algebra代考|Partitioning the domain


在示例中 $13.15$, 我们考虑了 $4 \in U_{13}$ 与 $\operatorname{ord}(4)=6$. 我们发现 $(4\rangle=$ 4 的所有整数幂。鉴于我们在第 13 章中研究过的这个和其他类似的例子, 很自然地想知道为什么 $g \mathrm{~ 需 要}$ 非零实数并且是乘㳂下的组。让 $H$ 是最小的子群 $\mathbb{R}^$ 包含元素 3 。通过闭包, $H$ 还必须包含 $3 \cdot 3=9,3 \cdot 3 \cdot 3=27,3^4=81$, 以及 3 的所有正幂。 $H$ 还必须包含乘法恒等式 1 。而且, $H$ 必须包 含其元素的乘法逆元, 即 $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}$, 等等。所以, 以便 $H=\langle 3\rangle$ ,在哪里 $\left\langle 3\right.$ ) 必须包含 3 的正负暍 (以及 $3^0=1$ ) 在示例中 14.1上面, 我们注意到 3 的整数菒彼此不同。这是因为 $\operatorname{ord}(3)$ 是无限的; 即, 没有正整数 $n$ 这样 $3^n=1$ 在 $\mathbb{R}^$. 那么定理 $12.29$ 㧴们得出结论 $3^k=3^{\ell}$ 当且仅当 $k=\ell$ 在 $\mathbb{Z}$. 将此与以下情况进行对比 $4 \in U_{13}$. 自 $\operatorname{ord}(4)=6$, 昰理 $13.12$ 暗示 $4^k=4^{\ell}$ 当且仅当 $k=\ell$ 在 $\mathbb{Z}6$. 在继续之前, 我们将第 13 章练习 #16 的结果作为一个定理。这个定理解释了为什么我们称 $\langle g\rangle$ 生成的值环 子群 $g$.

数学代写|抽象代数作业代写ALGEBRA代 考|Additive groups revisited 时。

再次考虑加法组 $\mathbb{Z} 12$ 回想 $-11$ 是一个生成器, 因为: $1=1,1+1=2,1+1+1=3,1+1+1+1=4, \ldots, \underbrace{1+1+\cdots+1} 12$ terms $=0$. 更简洁地写成 $$ 1 \cdot 1=1,2 \cdot 1=2,3 \cdot 1=3,4 \cdot 1=4, \ldots, 12 \cdot 1=0, $$ 我们得到了定义 $\langle 1\rangle=k \cdot 1 \mid k \in \mathbb{Z}$. 换吕话说, $\langle 1\rangle$ 包括 1 的所有整数倍,而不是 1 的所有整数㝜。我们 得出结论 \$\mathbb ${Z}{12}$ iscyclicwith $\backslash$ mathbb ${Z}{12}=\backslash$ langle $1 \backslash$ \angle $\$$ 对于有限群 $\mathbb{Z}{12}=\langle 1\rangle$, 我们只需要 1 的正倍数。但是对于无限群 $\mathbb{Z}$, 我们确实需要 1 的正负倍数 (以及 $0 \cdot 1=0)$ 。确实, 我们有
$$
\mathbb{Z}=\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots \quad=\ldots,-4 \cdot 1,-3 \cdot 1,-2 \cdot 1,-1 \cdot 1,0 \cdot 1,1 \cdot 1,2 \cdot 1,30 \text {. }
$$
以便 $\mathbb{Z}=\langle 1\rangle$. 我们还有 $\mathbb{Z}=\langle-1\rangle=k \cdot(-1) \mid k \in \mathbb{Z}$, 所以 1 和 $-1$ 都是循环群的生成器 $\mathbb{Z}$. 注意昰理 $14.5$, 当适用于添加剂组时, 说 $\langle g\rangle=\langle-g\rangle$. 因此我们期望 $\langle 1\rangle=\langle-1\rangle$. 你应该说服自己 $\mathbb{Z}$ 没有其他发电 机。

数学代写|抽象代数作业代写Algebra代考

数学代写|抽象代数作业代写Algebra代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在微观经济学代写Graph Theory代写方面经验极为丰富,各种微观经济学代写Microeconomics相关的作业也就用不着 说。

机器学习代写

机器学习(ML)是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用中,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。机器学习与统计学密切相关,统计学专注于使用计算机进行预测,但并非所有的机器学习都是统计学习。数学优化的研究为机器学习领域提供了方法、理论和应用领域。



统计推断代写

统计推断是指从数据中得出关于种群或科学真理的结论的过程。进行推断的模式有很多,包括统计建模、面向数据的策略以及在分析中明确使用设计和随机化。



微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。



计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。



MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注