数学代写|常微分方程代考Ordinary Differential Equations代写|MATH3001 Degenerate Linear Boundary Value Problems

如果你也在 怎样代写常微分方程Ordinary Differential Equations MATH3001这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。常微分方程Ordinary Differential Equations在数学中,常微分方程(ODE)是包含一个或多个独立变量的函数以及这些函数的导数的微分方程。术语普通是与术语偏微分方程相对应的,后者可能涉及一个以上的独立变量。

常微分方程Ordinary Differential Equations在常微分方程中,线性微分方程起着突出的作用,原因有几个。在物理学和应用数学中遇到的大多数基本函数和特殊函数都是线性微分方程的解(见整体函数)。当用非线性方程对物理现象进行建模时,一般用线性微分方程来近似,以便于求解。少数可以显式求解的非线性ODE,一般是通过将方程转化为等效的线性ODE来解决的(见,例如Riccati方程)。

海外留学生论文代写;英美Essay代写佼佼者!

EssayTA™有超过2000+名英美本地论文代写导师, 覆盖所有的专业和学科, 每位论文代写导师超过10,000小时的学术Essay代写经验, 并具有Master或PhD以上学位.

EssayTA™在线essay代写、散文、论文代写,3分钟下单,匹配您专业相关写作导师,为您的留学生涯助力!

我们拥有来自全球顶级写手的帮助,我们秉承:责任、能力、时间,为每个留学生提供优质代写服务

论文代写只需三步, 随时查看和管理您的论文进度, 在线与导师直接沟通论文细节, 在线提出修改要求. EssayTA™支持Paypal, Visa Card, Master Card, 虚拟币USDT, 信用卡, 支付宝, 微信支付等所有付款方式.

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

数学代写|常微分方程代考Ordinary Differential Equations代写|MATH3001 Degenerate Linear Boundary Value Problems

数学代写|常微分方程代考Ordinary Differential Equations代写|Degenerate Linear Boundary Value Problems

From Corollary $32.2$ we know that if $\Delta=0$, then the homogeneous boundary value problem (6.1), (32.2) has an infinite number of solutions. However, the following examples suggest that the situation is entirely different for the nonhomogeneous problem (6.6), (32.1).
Example 34.1. Consider the nonhomogeneous DE
$$
y^{\prime \prime}+2 y^{\prime}+5 y=4 e^{-x}
$$
together with the boundary conditions (32.16). As in Example $32.3$ we take $y_1(x)=e^{-x} \cos 2 x$ and $y_2(x)=e^{-x} \sin 2 x$ as two linearly independent solutions of the homogeneous $\mathrm{DE}(32.15)$. It is easy to verify that $z(x)=$ $e^{-x}$ is a solution of (34.1). Thus, the general solution of (34.1) can be written as
$$
y(x)=c_1 e^{-x} \cos 2 x+c_2 e^{-x} \sin 2 x+e^{-x} .
$$
This solution satisfies the boundary conditions (32.16) if and only if
$$
\begin{gathered}
c_1+1=0 \
-c_1 e^{-\pi / 2}+e^{-\pi / 2}=0,
\end{gathered}
$$
which is impossible. Hence, the problem (34.1), (32.16) has no solution.
Example 34.2. Consider the nonhomogeneous DE
$$
y^{\prime \prime}+2 y^{\prime}+5 y=4 e^{-x} \cos 2 x
$$
together with the boundary conditions (32.16). For the DE (34.3), $z(x)=$ $x e^{-x} \sin 2 x$ is a particular solution, and hence as in Example $34.1$ its general solution is
$$
y(x)=c_1 e^{-x} \cos 2 x+c_2 e^{-x} \sin 2 x+x e^{-x} \sin 2 x .
$$
This solution satisfies the boundary conditions (32.16) if and only if
$$
\begin{gathered}
c_1=0 \
-c_1 e^{-\pi / 2}=0,
\end{gathered}
$$

i.e., $c_1=0$. Thus, the problem (34.3), (32.16) has an infinite number of solutions
$$
y(x)=c e^{-x} \sin 2 x+x e^{-x} \sin 2 x,
$$
where $c$ is an arbitrary constant.

数学代写|常微分方程代考Ordinary Differential Equations代写|Maximum Principles

Maximum principles which are known for ordinary as well as partial differential inequalities play a key role in proving existence-uniqueness results and in the construction of solutions of DEs. In this lecture, we shall discuss the known maximum principle for a function satisfying a second-order differential inequality and extend it to a general form which is extremely useful in studying second-order initial and boundary value problems.

Theorem 35.1. If $y \in C^{(2)}[\alpha, \beta], y^{\prime \prime}(x) \geq 0$ in $(\alpha, \beta)$, and $y(x)$ attains its maximum at an interior point of $[\alpha, \beta]$, then $y(x)$ is identically constant in $[\alpha, \beta]$.

Proof. First, suppose that $y^{\prime \prime}(x)>0$ in $(\alpha, \beta)$; if $y(x)$ attains its maximum at an interior point, say, $x_0$ of $[\alpha, \beta]$, then $y^{\prime}\left(x_0\right)=0$ and $y^{\prime \prime}\left(x_0\right) \leq 0$, which is a contradiction to our assumption that $y^{\prime \prime}(x)>0$. Thus, if $y^{\prime \prime}(x)>0$ in $(\alpha, \beta)$, then the function $y(x)$ cannot attain its maximum at an interior point of $[\alpha, \beta]$. Now suppose that $y^{\prime \prime}(x) \geq 0$ in $(\alpha, \beta)$ and that $y(x)$ attains its maximum at an interior point of $[\alpha, \beta]$, say, $x_1$. If $y\left(x_1\right)=M$, then $y(x) \leq M$ in $[\alpha, \beta]$. Suppose that there exists a point $x_2 \in(\alpha, \beta)$ such that $y\left(x_2\right)x_1$, then we set $z(x)=\exp \left(\gamma\left(x-x_1\right)\right)-1$, where $\gamma$ is a positive constant. For this function $z(x)$, it is immediate that
$$
z(x)<0, \quad x \in\left[\alpha, x_1\right), \quad z\left(x_1\right)=0, \quad z(x)>0, \quad x \in\left(x_1, \beta\right]
$$
and
$$
z^{\prime \prime}(x)=\gamma^2 \exp \left(\gamma\left(x-x_1\right)\right)>0, \quad x \in[\alpha, \beta] .
$$
Now we define $w(x)=y(x)+\epsilon z(x)$, where $0<\epsilon<\left(M-y\left(x_2\right)\right) / z\left(x_2\right)$. Since $y\left(x_2\right)0$, such an $\epsilon$ always exists. From (35.1), it follows that $w(x)<y(x) \leq M, x \in\left(\alpha, x_1\right), w\left(x_2\right)=y\left(x_2\right)+\epsilon z\left(x_2\right)<M$, and $w\left(x_1\right)=M$.

Since $w^{\prime \prime}(x)=y^{\prime \prime}(x)+\epsilon z^{\prime \prime}(x)>0$ in $\left(\alpha, x_2\right)$, the function $w(x)$ cannot attain a maximum in the interior of $\left[\alpha, x_2\right]$. However, since $w(\alpha)<$ $M, w\left(x_2\right)x_1$ such that $y\left(x_2\right)<M$.

数学代写|常微分方程代考Ordinary Differential Equations代写|MATH3001 Degenerate Linear Boundary Value Problems

常微分方程代写

数学代写|常微分方程代考Ordinary Differential Equations代 写|Degenerate Linear Boundary Value Problems


从推论 $32.2$ 涐们知道, 如果 $\Delta=0$, 那么齐次边值问题 (6.1), (32.2) 有无穷多个解。但是, 以下示例表明, 对于非齐、欠问题 $(6.6) 、(32.1)$, 情况完全不同。
例 34.1。考虑非齐次 DE
$$
y^{\prime \prime}+2 y^{\prime}+5 y=4 e^{-x}
$$
连同边界条件 (32.16) 。如示例 $32.3$ 我们采取 $y_1(x)=e^{-x} \cos 2 x$ 和 $y_2(x)=e^{-x} \sin 2 x$ 作为齐次的 两个线性独立解 $\mathrm{DE}(32.15)$. 很穼易验证 $z(x)=e^{-x}$ 是 (34.1) 的解。因此, (34.1) 的通解可以写成
$$
y(x)=c_1 e^{-x} \cos 2 x+c_2 e^{-x} \sin 2 x+e^{-x}
$$
此解满足边界条件 (32.16) 当且仅当
$$
c_1+1=0-c_1 e^{-\pi / 2}+e^{-\pi / 2}=0
$$
这是不可能的。因此, 问题 $(34.1),(32.16)$ 汥有解。
例 34.2。考虑非齐次 DE
$$
y^{\prime \prime}+2 y^{\prime}+5 y=4 e^{-x} \cos 2 x
$$
连同边界条件 (32.16) 。对于 DE (34.3), $z(x)=x e^{-x} \sin 2 x$ 是一个特定的解决方案,因此与示例中一 样 34.1它的一般解㓉方案是
$$
y(x)=c_1 e^{-x} \cos 2 x+c_2 e^{-x} \sin 2 x+x e^{-x} \sin 2 x .
$$
此解满足边界条件 (32.16) 当且仅当
$$
c_1=0-c_1 e^{-\pi / 2}=0,
$$
IE。 $c_1=0$. 因此, 问题 $(34.3),(32.16)$ 有无数个解
$$
y(x)=c e^{-x} \sin 2 x+x e^{-x} \sin 2 x,
$$
在哪里 $c$ 是一个任意常数。


数学代写常微分方程代考Ordinary Differential Equations代 写|Maximum Principles


对于普通不等式和偏微分不等式已知的极大值原理在证明存在唯一性结果和构造 DE 解中起着关键作用。在 本讲中, 我们将讨论满足二阶微分不等式的函数的已知最大值原理, 并将其扩展为对研究二阶初值和边值问 题极为有用的一般形式。
定理 35.1。如果 $y \in C^{(2)}[\alpha, \beta], y^{\prime \prime}(x) \geq 0$ 在 $(\alpha, \beta)$, 和 $y(x)$ 在内部点达到最大值 $[\alpha, \beta]$, 然后 $y(x)$ 在 相同的常数 $[\alpha, \beta]$.
证晿。首先, 假设 $y^{\prime \prime}(x)>0$ 在 $(\alpha, \beta)$; 如果 $y(x)$ 在内部点达到最大值, 例如, $x_0$ 的 $[\alpha, \beta]$, 然后 $y^{\prime}\left(x_0\right)=0$ 和 $y^{\prime \prime}\left(x_0\right) \leq 0$, 这与牋们的假设相矛盾 $y^{\prime \prime}(x)>0$. 因此, 如果 $y^{\prime \prime}(x)>0$ 在 $(\alpha, \beta)$, 那么 函数 $y(x)$ 不能在内部点达到最大值 $[\alpha, \beta]$. 现在假设 $y^{\prime \prime}(x) \geq 0$ 在 $(\alpha, \beta)$ 然后 $y(x)$ 在内部点达到最大值 $[\alpha, \beta]$, 说, $x_1$. 如果 $y\left(x_1\right)=M$, 然后 $y(x) \leq M$ 在 $[\alpha, \beta]$. 假设存在一个点 $x_2 \in(\alpha, \beta)$ 这样 $y\left(x_2\right) x_1$, 那么涐们设 $z(x)=\exp \left(\gamma\left(x-x_1\right)\right)-1$, 在哪里 $\gamma$ 是一个正常数。对于这个功能 $z(x)$, 即 刻 $z(x)<0, \quad x \in\left[\alpha, x_1\right), \quad z\left(x_1\right)=0, \quad z(x)>0, \quad x \in\left(x_1, \beta\right]$ 和
$$
z^{\prime \prime}(x)=\gamma^2 \exp \left(\gamma\left(x-x_1\right)\right)>0, \quad x \in[\alpha, \beta]
$$
现在涐们定风 $w(x)=y(x)+\epsilon z(x)$, 在哪里 $0<\epsilon<\left(M-y\left(x_2\right)\right) / z\left(x_2\right)$. 自从 $y\left(x_2\right) 0$, 这样一 个 $\epsilon$ 一直存在。从 (35.1) 可以得出 $$ w(x)0$ 在 $\left(\alpha, x_2\right)$, 功能 $w(x)$ 在内部无法达到最大值 $\left[\alpha, x_2\right]$. 然而, 由于 $w(\alpha)<M, w\left(x_2\right) x_1$ 这样 $y\left(x_2\right)<M$.

数学代写|常微分方程代考Ordinary Differential Equations代写

数学代写|常微分方程代考Ordinary Differential Equations代写 请认准exambang™. exambang™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在微观经济学代写Graph Theory代写方面经验极为丰富,各种微观经济学代写Microeconomics相关的作业也就用不着 说。

机器学习代写

机器学习(ML)是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用中,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。机器学习与统计学密切相关,统计学专注于使用计算机进行预测,但并非所有的机器学习都是统计学习。数学优化的研究为机器学习领域提供了方法、理论和应用领域。



统计推断代写

统计推断是指从数据中得出关于种群或科学真理的结论的过程。进行推断的模式有很多,包括统计建模、面向数据的策略以及在分析中明确使用设计和随机化。



微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。



计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。



MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注