数学代写|整数优化代写Integer Programming代考|ESI6448 The knapsack model

如果你也在 怎样代写整数优化Integer Programming ESI6448这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。整数优化Integer Programming整数编程问题是一个数学优化或可行性程序,其中部分或全部变量被限制为整数。在许多情况下,该术语指的是整数线性编程(ILP),其中目标函数和约束(除整数约束外)是线性的。

整数优化Integer Programming整数编程是NP-完整的。特别是0-1整数线性规划的特殊情况,其中未知数是二进制的,只有限制条件必须得到满足,是Karp的21个NP-complete问题之一。如果一些决策变量不是离散的,那么这个问题就被称为混合整数编程问题。

整数优化Integer Programming代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的整数优化Integer Programming作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此整数优化Integer Programming作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

海外留学生论文代写;英美Essay代写佼佼者!

EssayTA有超过2000+名英美本地论文代写导师, 覆盖所有的专业和学科, 每位论文代写导师超过10,000小时的学术Essay代写经验, 并具有Master或PhD以上学位.

EssayTA™在线essay代写、散文、论文代写,3分钟下单,匹配您专业相关写作导师,为您的留学生涯助力!

我们拥有来自全球顶级写手的帮助,我们秉承:责任、能力、时间,为每个留学生提供优质代写服务

论文代写只需三步, 随时查看和管理您的论文进度, 在线与导师直接沟通论文细节, 在线提出修改要求. EssayTA™支持Paypal, Visa Card, Master Card, 虚拟币USDT, 信用卡, 支付宝, 微信支付等所有付款方式.

数学代写|整数优化代写Integer Programming代考|ESI6448 The knapsack model

数学代写|整数优化代写Integer Programming代考|The knapsack model

Mathematical model of a knapsack problem is given by (4.1).
Minimize
$$
Z=c_1 x_1+c_2 x_2+\ldots+c_j x_j+\ldots+c_n x_n,
$$
Such that:
$$
a_1 x_1+a_2 x_2+\ldots+a_j x_j+\ldots+a_n x_n \geq b
$$
Where $a_j, b$ and $c_j$ are given nonnegative constants and $x_j \geq 0$, and integers.Variable range
In general, limits on range of a variable are given in (4.2).
$$
\ell_j^a \leq x_j \leq \ell_j^b .
$$
Where $\ell_j^a$ and $\ell_j^b$ are lower and upper bounds for the variable $x_j$. In general, the lower limit for the variable $x_j, j=1,2, \ldots, n$ is as shown by (4.3).
$$
\left(\ell_j^a=0\right) .
$$
Similarly, the largest possible value for the variable $x_j$ as its upper limit can be determined as (4.4), which can be obtained as.
$$
\ell_j^b=I_j+1 .
$$
Where $\frac{b}{c_j}=I_j+f$ and $f$ is the fractional part of $\frac{b}{c_j}$.
These variable limits $\ell_j^a$ and $\ell_j^b$ for the variable $x_j$ are two wide to show any advantage in their current form. However, there is a need to narrow it down and fortunately it is possible. The variable range for the variable $x_j$ is given by (4.5).
$$
R\left[x_j\right]=\ell_j^b-\ell_j^a .
$$

数学代写|整数优化代写Integer Programming代考|Objective value upper bound

For a given knapsack problem, the variables, variable upper limits and values of the objective function can be summarized as given in Table 4.1.

In Table 4.1, the integral upper limits are used to calculate the $n$ values of the objective function. The most likely basic variable can be identified using the minimum objective value $\left(Z_j^{U B}\right)$ given by (4.6).
$$
Z_j^{U B}=\operatorname{Min}\left[Z_1, Z_2, \ldots, Z_n\right] .
$$
The objective upper bound constraint can be formulated as given in (4.7).
$$
c_1 x_1+c_2 x_2+\ldots+c_j x_j+\ldots+c_n x_n \leq Z_j^{U B} .
$$

数学代写|整数优化代写Integer Programming代考|ESI6448 The knapsack model

整数优化代写

数学代写|整数优化代写Integer Programming代考|The knapsack model


背包问题的数学模型由 (4.1) 给出。
最小化
$$
Z=c_1 x_1+c_2 x_2+\ldots+c_j x_j+\ldots+c_n x_n
$$
这样:
$$
a_1 x_1+a_2 x_2+\ldots+a_j x_j+\ldots+a_n x_n \geq b
$$
在哪里 $a_j, b$ 和 $c_j$ 给定非负常数和 $x_j \geq 0$, 和整数。变䵡范围 通常, 变黑菻围的限制在 (4.2) 中给出。
$$
\ell_j^a \leq x_j \leq \ell_j^b .
$$
在哪里 $\ell_j^a$ 和 $\ell_j^b$ 是变䵡的下限和上限 $x_j$. 一般来说, 变荲的下限 $x_j, j=1,2, \ldots, n$ 如式 (4.3) 所示。
$$
\left(\ell_j^a=0\right) .
$$
同样, 变黑的最大可能值 $x_j$ 因为它的上限可以确定为 $(4.4)$, 可以得到。
$$
\ell_j^b=I_j+1 .
$$
在哪里 $\frac{b}{c_j}=I_j+f$ 和 $f$ 是小数部分 $\frac{b}{c_j}$.
这些可变限制 $\ell_j^a$ 和 $\ell_j^b$ 对于变䵡 $x_j$ 是两个宽, 以显示其当前形式的任何优抛。但是, 有必要缩小范围, 幸运 的是这是可能的。变荲的变量范围 $x_j$ 由 (4.5) 给出。
$$
R\left[x_j\right]=\ell_j^b-\ell_j^a .
$$


数学代写整数优化代写Integer Programming代考|Objective value upper bound


对于给定的背包问题, 目标函数的变荲、变量上限和值可以总结如表 $4.1$ 所示。
在表 4.1 中, 积分上限用于计算 $n$ 目标函数的值。最可能的基本变量可以使用最小目标值来识别 $\left(Z_j^{U B}\right)$ 由 (4.6) 给出。
$$
Z_j^{U B}=\operatorname{Min}\left[Z_1, Z_2, \ldots, Z_n\right] .
$$
客观上界约束可以表述为(4.7)中给出。
$$
c_1 x_1+c_2 x_2+\ldots+c_j x_j+\ldots+c_n x_n \leq Z_j^{U B} .
$$

数学代写|整数优化代写Integer Programming代考

数学代写|整数优化代写Integer Programming代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。



博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。



微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。



计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。



MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注