数学代写|连续时间的期权定价理论代写Arbitrage Pricing in Continuous Time代考|MATH4511 The Model

如果你也在 怎样代写连续时间的期权定价理论 Arbitrage Pricing in Continuous Time这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。连续时间的期权定价理论 Arbitrage Pricing in Continuous Time在金融学中,套利定价理论(APT)是一个多因素的资产定价模型,它将各种宏观经济(系统)风险变量与金融资产的定价联系起来。它由经济学家Stephen Ross于1976年提出,人们普遍认为它是对其前身资本资产定价模型(CAPM)的改进。

连续时间的期权定价理论 Arbitrage Pricing in Continuous TimeAPT建立在单一价格法则的基础上,它表明在均衡市场中,理性投资者将实施套利,从而最终实现均衡价格。 因此,APT认为,当某一时期的套利机会被耗尽时,那么资产的预期收益是各种因素或理论市场指数的线性函数,其中每个因素的敏感性由特定因素的β系数或因素负荷来表示。因此,它为交易者提供了一个 “真实 “资产价值的指示,并能通过套利利用市场差异。APT的线性因子模型结构被用作评估资产配置、管理基金的业绩以及计算资本成本的基础。

连续时间的期权定价理论 Arbitrage Pricing in Continuous Time代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的连续时间的期权定价理论 Arbitrage Pricing in Continuous Time作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此连续时间的期权定价理论 Arbitrage Pricing in Continuous Time作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

海外留学生论文代写;英美Essay代写佼佼者!

EssayTA有超过2000+名英美本地论文代写导师, 覆盖所有的专业和学科, 每位论文代写导师超过10,000小时的学术Essay代写经验, 并具有Master或PhD以上学位.

EssayTA在线essay代写、散文、论文代写,3分钟下单,匹配您专业相关写作导师,为您的留学生涯助力!

我们拥有来自全球顶级写手的帮助,我们秉承:责任、能力、时间,为每个留学生提供优质代写服务

论文代写只需三步, 随时查看和管理您的论文进度, 在线与导师直接沟通论文细节, 在线提出修改要求. EssayTA™支持Paypal, Visa Card, Master Card, 虚拟币USDT, 信用卡, 支付宝, 微信支付等所有付款方式.

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

数学代写|连续时间的期权定价理论代写Arbitrage Pricing in Continuous Time代考|MATH4511 The Model

数学代写|连续时间的期权定价理论代写Arbitrage Pricing in Continuous Time代考|The Model

We consider a financial market with $N$ different financial assets. These assets could in principle be almost anything, like bonds, stocks, options or whatever financial instrument that is traded on a liquid market. The market only exists at the two points in time $t=0$ and $t=1$, and the price per unit of asset No. $i$ at time $t$ will be denoted by $S_t^i$. We thus have a price vector process $S_t, t=0,1$ and we will view the price vector as a column vector, i.e.
$$
S_t=\left[\begin{array}{c}
S_t^1 \
\vdots \
S_t^N
\end{array}\right]
$$
The randomness in the system is modeled by assuming that we have a finite sample space $\Omega=\left{\omega_1, \ldots, \omega_M\right}$ and that the probabilities $p_j=P\left(\omega_j\right), j=1, \ldots, N$ are all strictly positive. The price vector $S_0$ is assumed to be deterministic and known to us, but the price vector at time $t=1$ depends upon the outcome $\omega \in \Omega$, and $S_1^i\left(\omega_j\right)$ denotes the price per unit of asset No. $i$ at time $t=1$ if $\omega_j$ has occured.
We may therefore define the matrix $D$ by
$$
D=\left[\begin{array}{cccc}
S_1^1\left(\omega_1\right) & S_1^1\left(\omega_2\right) & \cdots & S_1^1\left(\omega_M\right) \
S_1^2\left(\omega_1\right) & S_1^2\left(\omega_2\right) & \cdots & S_1^2\left(\omega_M\right) \
\vdots & \vdots & & \vdots \
S_1^N\left(\omega_1\right) & S_1^N\left(\omega_2\right) & \cdots & S_1^N\left(\omega_M\right)
\end{array}\right]
$$

数学代写|连续时间的期权定价理论代写Arbitrage Pricing in Continuous Time代考|Absence of Arbitrage

We now define a portfolio as an $N$ dimensional row vector $h=\left[h^1, \ldots, h^N\right]$ with the interpretation that $h^i$ is the number of units of asset No. $i$ that we buy at time $t=0$ and keep until time $t=1$.

Since we are buying the assets with deterministic prices at time $t=0$ and selling them at time $t=1$ at stochastic prices, the value process of our portfolio will be a stochastic process $V_t^h$ defined by
$$
V_t^h=\sum_{i=1}^N h^i S_t^i=h S_t, \quad t=0,1,
$$
and in more detail we can write this as
$$
V_t^h\left(\omega_i\right)=h S_t\left(\omega_i\right)=h d_i=(h D)_i .
$$
There are various similar, but not equivalent, variations of the concept of an arbitrage portfolio. The standard one is the following.

Definition 3.1 The portfolio $h$ is an arbitrage portfolio if it satisfies the conditions
$$
\begin{aligned}
V_0^h &=0, \
P\left(V_1^h \geq 0\right) &=1, \
P\left(V_1^h>0\right) &>0 .
\end{aligned}
$$
In more detail we can write this as
$$
\begin{aligned}
V_0^h &<0, \ V_1^h\left(\omega_i\right) & \geq 0, \quad \text { for all } i=1, \ldots, M, \ V_1^h\left(\omega_i\right) &>0, \quad \text { for some } i=1, \ldots, M .
\end{aligned}
$$

数学代写|连续时间的期权定价理论代写Arbitrage Pricing in Continuous Time代考|MATH4511 The Model

连续时间的期权定价理论代写

数学代写|连续时间的期权定价理论代写 Arbitrage Pricing in Continuous Time代考|The Model


我们考虑一个金融市场 $N$ 不同的金融资产。原则上,这些资产几平可以是任何东西, 例如债券、股票、期权 或在流动市场上交易的任何金融工具。市场只存在于两个时间点 $t=0$ 和 $t=1$, 以及每单位资产的价楁编
$$
S_t=\left[S_t^1 \vdots S_t^N\right]
$$
系统中的随机性是通过假设我们有一个有限的样本空间来建模的 极的。价格向量 $S_0$ 假设是确定性的并且我们知道, 但价格向量在时间 $t=1$ 取决于结果 $\omega \in \Omega$, 和 $S_1^i\left(\omega_j\right)$ 表示每单位资产编号的价格。 $i$ 有时 $t=1$ 如果 $\omega_j$ 已经发生。 因此我们可以定义矩阵 $D$ 经过


数学代它连续时间的期权定价理论代它 Arbitrage Pricing in Continuous Time代考|Absence of Arbitrage


我们现在将投资组合定义为 $N$ 维行向量 $h=\left[h^1, \ldots, h^N\right]$ 解释为 $h^i$ 是资产编号的单位数。 $i$ 我们当时买的 $t=0$ 并保持到时间 $t=1$.
由于我们当时购买的是具有确定价格的资产 $t=0$ 并及时出售 $t=1$ 在随机价格下, 我们投资组合的价值过 程将是一个随机过程 $V_t^h$ 被定义为
$$
V_t^h=\sum_{i=1}^N h^i S_t^i=h S_t, \quad t=0,1,
$$
更详细地说, 涐们可以把它写戌
$$
V_t^h\left(\omega_i\right)=h S_t\left(\omega_i\right)=h d_i=(h D)_i .
$$
套利投资组合的概念有各种相似但不等价的变体。标准的如下。
定义 $3.1$ 投资组合 $h$ 如果满足条件,则为套利投资组合
$$
V_0^h=0, P\left(V_1^h \geq 0\right) \quad=1, P\left(V_1^h>0\right)>0 .
$$
更详细地说, 涐们可以把它与成
$V_0^h<0, V_1^h\left(\omega_i\right) \geq 0, \quad$ for all $i=1, \ldots, M, V_1^h\left(\omega_i\right)>0, \quad$ for some $i=1, \ldots, M$

数学代写|连续时间的期权定价理论代写Arbitrage Pricing in Continuous Time代考

数学代写|连续时间的期权定价理论代写Arbitrage Pricing in Continuous Time代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。



博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。



微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。



计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。



MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注