数学代写|分形几何和混沌系统代考Fractal Geometry & Chaotic Dynamics代写|MATH3062 Box dimension: another way of measuring dimension

如果你也在 怎样代写分形几何和混沌系统Fractal Geometry & Chaotic Dynamics MATH3062这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。分形几何和混沌系统Fractal Geometry & Chaotic Dynamics在数学中,分形是一种在任意小的尺度上包含详细结构的几何形状,通常具有严格超过拓扑维数的分形维数。许多分形在不同尺度上看起来都很相似,如曼德布罗特集的连续放大图。这种在越来越小的尺度上展示相似的图案被称为自相似性,也被称为扩展对称性或展开对称性;如果这种复制在每个尺度上都完全相同,如门格尔海绵,这种形状被称为仿生自相似性。

分形几何和混沌系统Fractal Geometry & Chaotic Dynamics分形与有限几何图形的一个不同之处在于它们的尺度。将一个填充多边形的边长增加一倍,其面积就会乘以4,也就是2(新边长与旧边长之比)提高到2的幂(填充多边形的常规尺寸)。同样,如果一个填充球体的半径增加一倍,它的体积就会增加8,也就是2(新与旧半径之比)到3的幂(填充球体的常规尺寸)。然而,如果一个分形的一维长度全部翻倍,那么分形的空间内容就会以一个不一定是整数的幂来扩展,一般来说,这个幂大于其常规维度。这个幂被称为几何对象的分形维度,以区别于常规维度(正式名称为拓扑维度)。

分形几何和混沌系统Fractal Geometry & Chaotic Dynamics代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的分形几何和混沌系统Fractal Geometry & Chaotic Dynamics作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此分形几何和混沌系统Fractal Geometry & Chaotic Dynamics作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

海外留学生论文代写;英美Essay代写佼佼者!

EssayTA™有超过2000+名英美本地论文代写导师, 覆盖所有的专业和学科, 每位论文代写导师超过10,000小时的学术Essay代写经验, 并具有Master或PhD以上学位.

EssayTA™在线essay代写、散文、论文代写,3分钟下单,匹配您专业相关写作导师,为您的留学生涯助力!

我们拥有来自全球顶级写手的帮助,我们秉承:责任、能力、时间,为每个留学生提供优质代写服务

论文代写只需三步, 随时查看和管理您的论文进度, 在线与导师直接沟通论文细节, 在线提出修改要求. EssayTA™支持Paypal, Visa Card, Master Card, 虚拟币USDT, 信用卡, 支付宝, 微信支付等所有付款方式.

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

数学代写|分形几何和混沌系统代考Fractal Geometry & Chaotic Dynamics代写|MATH3062 Box dimension: another way of measuring dimension

数学代写|分形几何和混沌系统代考Fractal Geometry & Chaotic Dynamics代写|Box dimension: another way of measuring dimension

a. Box dimension: another way of measuring dimension. In the definition of the Hausdorff function $m(Z, \alpha)$, we considered covers whose sets have diameter less than or equal to $\varepsilon$; within a particular cover, we might find sets on many different scales, some of which could have diameter much smaller than $\varepsilon$.

An alternate approach is to restrict our attention to covers by sets on the same (small) scale; thus we denote by $\mathcal{D}^{\prime}(Z, \varepsilon)$ the collection of all countable open covers $\mathcal{U}$ of $Z$ such that $\operatorname{diam} U=\varepsilon$ for every $U \in \mathcal{U}$. We then define a set function
$$
r(Z, \alpha, \varepsilon)=\inf _{\mathcal{D}^{\prime}(Z, \varepsilon)} \sum_i\left(\operatorname{diam} U_i\right)^\alpha .
$$
This differs from the definition $(2.2)$ of $m(Z, \alpha, \varepsilon)$ in only a single symbol; $\leq$ is replaced by $=$ in the definition of the collection of covers. Nevertheless, the effect of this change is quite drastic; in the first place, the argument that $m(Z, \alpha, \varepsilon)$ depends monotonically on $\varepsilon$ does not apply to $r(Z, \alpha, \varepsilon)$, since the collections of admissible covers for two different values of $\varepsilon$ are disjoint!

As a result of this change, we have no a priori guarantee that the limit of $r(Z, \alpha, \varepsilon)$ as $\varepsilon \rightarrow 0$ exists; indeed, there are many examples for which it does not. To deal with this difficulty, we need the concept of upper and lower limits.

数学代写|分形几何和混沌系统代考Fractal Geometry & Chaotic Dynamics代写|Properties of box dimension

b. Properties of box dimension. As an immediate consequence of Proposition 2.28, we have the following analogue of Proposition 2.8:
Proposition 2.29. The upper and lower box dimensions have the following basic properties.
(1) Normalisation: $\operatorname{dim}_B \emptyset=\overline{\operatorname{dim}}_B \emptyset=0$.
(2) Monotonicity: $\operatorname{dim}_B Z_1 \leq \operatorname{dim}_B Z_2$ and $\overline{\operatorname{dim}}_B Z_1 \leq \overline{\operatorname{dim}}_B Z_2$ whenever $Z_1 \subset Z_2$.
(3) If $\left{Z_i\right}$ is any countable collection of subsets of $\mathbb{R}^d$, then
$$
\begin{aligned}
&\operatorname{dim}_B\left(\bigcup Z_i\right) \geq \sup _i\left(\operatorname{dim}_B Z_i\right) \
&\overline{\operatorname{dim}}_B\left(\bigcup Z_i\right) \geq \sup _i\left(\overline{\operatorname{dim}}_B Z_i\right)
\end{aligned}
$$
Property (3) follows immediately from property (2), and is weaker than its analogue in Proposition $2.8$ because of the failure of countable subadditivity for the lower and upper box dimensions; in Example $2.36$, we will see that the inequality may become strict.

数学代写|分形几何和混沌系统代考Fractal Geometry & Chaotic Dynamics代写|MATH3062 Box dimension: another way of measuring dimension

分形几何和混沌系统代考

数学代写分形几何和混沌系统代考Fractal Geometry \& Chaotic Dynamics代写|Box dimension: another way of measuring dimension一个。

㗐子尺寸 : 另一种测量尺寸的方法。在豪斯多夫函数的定义中 $m(Z, \alpha)$, 我们考虑了其集合的直径 小于或等于 $\varepsilon$; 在特定的封面内, 我们可能会发现许多不同尺度的集合, 其中一些的直径可能比 $\varepsilon$.
另一种方法是通过相同(小) 规模的集合将我们的注意力限制在封面上; 因此我们表示为 $\mathcal{D}^{\prime}(Z, \varepsilon)$ 所有可 数开盖的集合 $\mathcal{U}$ 的 $Z$ 这样 $\operatorname{diam} U=\varepsilon$ 对于每个 $U \in \mathcal{U}$. 然后涐们定义一个集合函数
$$
r(Z, \alpha, \varepsilon)=\inf {\mathcal{D}^{\prime}(Z, \varepsilon)} \sum_i\left(\operatorname{diam} U_i\right)^\alpha . $$ 这与定义不同 $(2.2)$ 的 $m(Z, \alpha, \varepsilon)$ 只有一个符号; 被替换为=在封面集合的定义中。然而, 这种变化的影 响是相当剧烈的。首先, 这个论点 $m(Z, \alpha, \varepsilon)$ 单调地依赖于 $\varepsilon$ 不适用于 $r(Z, \alpha, \varepsilon)$, 因为可接受的集合涵盖 了两个不同的值 $\varepsilon$ 是不相交的! 由于这一变化, 我们无法事先保证 $r(Z, \alpha, \varepsilon)$ 作为 $\varepsilon \rightarrow 0$ 存在; 事实上, 有很多例子没有。为了解决这个困 难, 我们需要上限和下限的概念。

数学代写分形几何和混沌系统代考 Fractal Geometry \& Chaotic Dynamics代写|Properties of dimension dim.

命题 2.29。上下框尺寸具有以下基本属性。 (1) 呗范化: \$ \operatorname ${\text { dim }}{-}$B \emptyset=\overline ${\backslash \text { operatorname }{\text { dim }}}_{-} B$
wheneverZ_1 \子集 Z_2. (3)If \eft $\left{Z_{-} \backslash \backslash\right.$ right $}$ isanycountablecollectionofsubsetsof
$\backslash$ mathbb ${\mathrm{R}}^{\wedge} \mathrm{d}$, then $\$$
$\backslash$ begin {aligned}
Z_i \right) \
$\backslash$ lend{aligned}
$\$ \$$
属性 (3) 坚跟属性 (2), 并且比命题中的类似物弱 $2.8$ 因为上下框尺寸的可数次可加性失败; 在示例中 $2.36$ , 我们将看到不等式可能变得严格。

数学代写|分形几何和混沌系统代考Fractal Geometry & Chaotic Dynamics代写

数学代写|分形几何和混沌系统代考Fractal Geometry & Chaotic Dynamics代写 请认准exambang™. exambang™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在微观经济学代写Graph Theory代写方面经验极为丰富,各种微观经济学代写Microeconomics相关的作业也就用不着 说。

机器学习代写

机器学习(ML)是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用中,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。机器学习与统计学密切相关,统计学专注于使用计算机进行预测,但并非所有的机器学习都是统计学习。数学优化的研究为机器学习领域提供了方法、理论和应用领域。



统计推断代写

统计推断是指从数据中得出关于种群或科学真理的结论的过程。进行推断的模式有很多,包括统计建模、面向数据的策略以及在分析中明确使用设计和随机化。



微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。



计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。



MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注